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Let’s go back to 2012
Hindle et al., ICSE 2012

• One of my favourite papers: On Naturalness of Software (https://dl.acm.org/
doi/10.5555/2337223.2337322)


• “Programming languages, in theory, are complex, flexible and powerful, but 
the programs that real people actually write are mostly simple and rather 
repetitive, and thus they have usefully predictable statistical properties that 
can be captured in statistical language models and leveraged for software 
engineering tasks.”


• But what is “naturalness”?

https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322


What is “natural” about language?

• Natural language refers to ordinary languages 
that occur naturally in human community “by 
process of use, repetition, and change without 
conscious planning of premeditation” 
(Wikipedia)


• From the statistical point of view, it means 
that most of our utterances are simple, 
repetitive, and therefore predictable.


• Surely this is how we all learn language.

https://en.wikipedia.org/wiki/Natural_language


John: Hi, nice to meet you. How are  you?

Mary: I’m ____, _____ ___. ___ ___?

a) fine, thank you. And you?


b) okay, I guess. But why?



What about code?

• It is not “natural”, in the sense that we have artificially created the grammar 
for programming languages.


• Programming languages do evolve, but how?


• Intentionally? New grammars, language consortiums, etc…


• Gradually? Languages do affect each other, a newer and more popular 
style eventually gets accepted, etc…



Python: for _ __ _____ … Java: for _ ___ _ _ _ _ …

a) i in range


b) ( int i = 0;

a) i in range


b) ( int i = 0;



Statistical Language Model

• Given a set of tokens, , a set of possible utterances, , and a set of actual 
utterances, , a language model is a probability distribution  over utterances 

, i.e., 


• An utterance (or a sentence) is a sequence of tokens (or words). Suppose we have  
tokens,  that consist . What is ?


• 


• But these conditional probabilities are hard to calculate: the only feasible approach 
would be count each utterance that qualifies, but  is too big, let alone .

𝒯 𝒯*
𝒮 ⊂ 𝒯* p

s ∈ 𝒮 ∀s ∈ 𝒮[0 < p(s) < 1 ∧ ∑
s∈𝒮

p(s) = 1

N
a1, a2, …, aN s p(s)

p(s) = p(a1)p(a2 |a1)p(a3 |a1 . a2)p(a4 |a1, a2, a3)…p(aN |a1…aN−1)

𝒮 𝒯*



N-Grams

• Assumes Markov property, i.e., the next token is influenced only by those 
came immediately before (say, within the window of  tokens)!


• 


• This is now much more tractable:


• 


• Given some context, we can now compute the probability of the candidate 
token that comes next. In other words, we can predict the next token!

n

p(ai |a1…ai−1) ≃ p(ai |ai−3ai−2ai−1)

p(ai |ai−3ai−2ai−1) =
count(ai−3, ai−2, ai−1, ai)
count(ai−3, ai−2, ai−1, * )



Large Language Model
(really, a very large statistical language model)

• Mainly Transformer-based DNNs that are trained to be an auto-regressive 
language model, i.e., given a sequence of tokens, it repeatedly tries to predict 
the next token.


• The biggest hype in SE research right now with an explosive growth, 
because:


• They seem to get the semantics of the code and work across natural and 
programming language


• Emergent behavior leading to very attractive properties such as in-context 
learning, Chain-of-Thoughts, or PAL



Survey of the Explosion 💥
ICSE 2023 Future of SE Track (https://arxiv.org/abs/2310.03533)

https://arxiv.org/abs/2310.03533
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Fig. 1. A mapping between software development activities, research domains, and the paper structure

Fig. 2. Trends in number of arXiv preprints. The blue line denotes the number
of preprints categorised under “CS”. The orange line denotes the number of
preprints in AI (cs.AI), Machine Learning (cs.LG), Neural and Evolutionary
Computing (cs.NE), Software Engineering (cs.SE), and Programming Lan-
guage (cs.PL) whose title or abstract contains either “Large Language Model”,
“LLM”, or “GPT”. The green line denotes the number of preprints in SE and
PL categories whose title or abstract contains either “Large Language Model”,
“LLM”, or “GPT”

Fig. 3. Proportions of LLM papers and SE papers about LLMs. By “about
LLMs”, we mean that either the title or the abstract of a preprint contains
“LLM”, “Large Language Model”, or “GPT”. The blue line denotes the
percentage of the number of preprints about LLMs out of the number of
all preprints in the CS category. The orange line denotes the percentage of
the number of preprints about LLMs in cs.SE and cs.PL categories out of all
preprints about LLMs

Figure 2, shows the growth in the number of arXiv-
published papers on Computer Science (|A|, in Blue), and on
LLMs (|L|, in orange). Those papers specifically on Software
Engineering and LLMs are depicted in Green (|L \ S|).
Given the rapid rise in overall publication volumes, we use
a logarithmic scale for the vertical axis. Unsurprisingly, we
see an overall rise in the number of CS publications.

Also, given the recent upsurge in attention for LLMs, the
exponential rise in the number of papers on LLMs is relatively
unsurprising.

Perhaps more interesting is the rapid uptake of Software
Engineering applications of LLMs, as revealed by the growth
trend, pictured in green on this figure. In order to examine
this trend in more detail, we plot the proportion of LLM pub-
lications (L) to all CS publications (A) in blue, as well as the
proportions of LLM-based software engineering publications
(L \ S) to all LLM publications in orange in Figure 3. As
can be seen, the proportion of LLM papers on LLM-based
Software Engineering has been rising dramatically since 2019.
Already, more than 10% of all papers on LLMs are concerned
with LLM-based Software Engineering.

As a result of this growth, we can expect many other surveys
of LLM-Based SE. The rapid expansion of the literature makes
it unlikely that further comprehensive SE-wide studies will fit
the space constraints of a single paper, but we can expect many
specific comprehensive surveys of sub-areas of interest, and
also Systematic Literature Reviews (SLRs) that tackle SE-wide
crosscutting issues by asking specific research questions of
the primary literature in the systematic review. Already, such
SLRs are appearing. For example, Hou et al. [15] provided
an excellent recent SLR covering 229 research papers from
2017 to 2023 reporting SE tasks tackled, data collection and
preprocessing techniques, and strategies for optimising LLM
performance (such as prompt engineering).

The remainder of this paper is organised to follow the top-
level software development activities and research domains as
depicted in Figure 1.

II. PRELIMINARIES

A. Large Language Models

A Large Language Model (LLM) refers to an Artificial
Intelligence (AI) model that has been trained on large amounts
of data and is able to generate text in a human-like fashion.
Table III provides a glossary of LLM terminology to make the
paper self-contained.
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Figure 2, shows the growth in the number of arXiv-
published papers on Computer Science (|A|, in Blue), and on
LLMs (|L|, in orange). Those papers specifically on Software
Engineering and LLMs are depicted in Green (|L \ S|).
Given the rapid rise in overall publication volumes, we use
a logarithmic scale for the vertical axis. Unsurprisingly, we
see an overall rise in the number of CS publications.

Also, given the recent upsurge in attention for LLMs, the
exponential rise in the number of papers on LLMs is relatively
unsurprising.

Perhaps more interesting is the rapid uptake of Software
Engineering applications of LLMs, as revealed by the growth
trend, pictured in green on this figure. In order to examine
this trend in more detail, we plot the proportion of LLM pub-
lications (L) to all CS publications (A) in blue, as well as the
proportions of LLM-based software engineering publications
(L \ S) to all LLM publications in orange in Figure 3. As
can be seen, the proportion of LLM papers on LLM-based
Software Engineering has been rising dramatically since 2019.
Already, more than 10% of all papers on LLMs are concerned
with LLM-based Software Engineering.

As a result of this growth, we can expect many other surveys
of LLM-Based SE. The rapid expansion of the literature makes
it unlikely that further comprehensive SE-wide studies will fit
the space constraints of a single paper, but we can expect many
specific comprehensive surveys of sub-areas of interest, and
also Systematic Literature Reviews (SLRs) that tackle SE-wide
crosscutting issues by asking specific research questions of
the primary literature in the systematic review. Already, such
SLRs are appearing. For example, Hou et al. [15] provided
an excellent recent SLR covering 229 research papers from
2017 to 2023 reporting SE tasks tackled, data collection and
preprocessing techniques, and strategies for optimising LLM
performance (such as prompt engineering).

The remainder of this paper is organised to follow the top-
level software development activities and research domains as
depicted in Figure 1.

II. PRELIMINARIES

A. Large Language Models

A Large Language Model (LLM) refers to an Artificial
Intelligence (AI) model that has been trained on large amounts
of data and is able to generate text in a human-like fashion.
Table III provides a glossary of LLM terminology to make the
paper self-contained.
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• Above certain size, LLMs change 
their behavior in interesting ways


• The point of change in slope is 
referred to as “breaks”

What is an Emergent Behavior?

Caballero et al., https://arxiv.org/abs/2210.14891

https://arxiv.org/abs/2210.14891


Do we expect LLMs to replace developers?

• I am cautiously skeptical about this.


• At its core, it is still a statistical language model, i.e., it predicts the most 
natural utterances.


• Whether this is a sufficient infrastructure for general intelligence, no one 
knows.


• But we can nonetheless harness the statistical nature of LLMs in a productive 
way in the context of software engineering :) 



In-context Learning

• Previously, getting a model for a specific task involved either dedicated model 
+ training, or at least general pre-trained model + fine-tuning


• Above certain size, LLMs show the ability to perform in-context learning, i.e., 
they learn as part of their context (i.e., preceding tokens), leading to prompt 
engineering:


• Few-shot learning: the context explains the problem, and gives a few 
examples of question-answer. LLMs can now answer an un-seen question.


• Zero-shot learning: the context explains the problem as well as how it can 
be solved. LLMs can now answer an un-seen problem.



Chain-of-Thoughts
Wei et al., https://arxiv.org/abs/2201.11903

• Underneath, LLMs are doing autocompletion, not any other type of reasoning: 
they appear to be capable of rational inference because the corpus they are 
trained include traces of logical reasoning.


• So, conditioning the model (with the context) to be more precise about the 
reasoning steps can result in generation of more accurate reasoning steps.


• Add “Let’s think in step by step” at the end of every prompt (https://
arxiv.org/abs/2205.11916) 🙃 🫥 🫠

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916


Chain-of-Thoughts
Wei et al., https://arxiv.org/abs/2201.11903

• Add “Let’s think in step by step” at the end of every prompt (https://arxiv.org/
abs/2205.11916) and the model performance go up! 🙃 🫥 🫠


• We have even weirder, recent results. 


• If you make a strong emotional plea, the performance improves (https://
arxiv.org/abs/2307.11760) 🥺


• Apparently, there is anecdotal evidence that a promise of a large tip 
produces mode detailed responses (https://twitter.com/voooooogel/status/
1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg) 💰

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://twitter.com/voooooogel/status/1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg
https://twitter.com/voooooogel/status/1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg
https://twitter.com/voooooogel/status/1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg


Wang et al., ICLR 2023 (https://arxiv.org/abs/2203.11171)

• When sampling answers from an 
LLM, take multiple answers with 
high temperature.


• If there is an answer that has the 
majority among the sampled 
answers, it is more likely to be 
the correct one.

Self-Consistency

https://arxiv.org/abs/2203.11171


Wang et al., ICLR 2023



Yao et al., ICLR 2023 (https://arxiv.org/abs/2210.03629)

• What if we need external information 
for the in-context learning? In other 
words, can LLMs be given tools?


• Remember that this is still 
autocompletion:


• LLMs can be taught to signal the 
need to invoke tools


• Whenever LLMs need a tool 
invocation, we can do it ourselves 
and paste the outcome back into 
the context

ReAct

ReAct: Synergizing Reasoning and Acting in Language Models, Yao et al., ICLR 2023

https://arxiv.org/abs/2210.03629

Published as a conference paper at ICLR 2023
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Figure 1: (1) Comparison of 4 prompting methods, (a) Standard, (b) Chain-of-thought (CoT,
Reason Only), (c) Act-only, and (d) ReAct (Reason+Act), solving a HotpotQA (Yang et al., 2018)
question. (2) Comparison of (a) Act-only and (b) ReAct prompting to solve an AlfWorld (Shridhar
et al., 2020b) game. In both domains, we omit in-context examples in the prompt, and only show task
solving trajectories generated by the model (Act, Thought) and the environment (Obs).

answers from questions in arithmetic, commonsense, and symbolic reasoning tasks (Wei et al.,
2022). However, this “chain-of-thought” reasoning is a static black box, in that the model uses
its own internal representations to generate thoughts and is not grounded in the external world,
which limits its ability to reason reactively or update its knowledge. This can lead to issues like fact
hallucination and error propagation over the reasoning process (Figure 1 (1b)). On the other hand,
recent work has explored the use of pre-trained language models for planning and acting in interactive
environments (Ahn et al., 2022; Nakano et al., 2021; Yao et al., 2020; Huang et al., 2022a), with
a focus on predicting actions via language priors. These approaches usually convert multi-modal
observations into text, use a language model to generate domain-specific actions or plans, and then
use a controller to choose or execute them. However, they do not employ language models to reason
abstractly about high-level goals or maintain a working memory to support acting, barring Huang
et al. (2022b) who perform a limited form of verbal reasoning to reiterate spatial facts about the
current state. Beyond such simple embodied tasks to interact with a few blocks, there have not been
studies on how reasoning and acting can be combined in a synergistic manner for general task solving,
and if such a combination can bring systematic benefits compared to reasoning or acting alone.

In this work, we present ReAct, a general paradigm to combine reasoning and acting with language
models for solving diverse language reasoning and decision making tasks (Figure 1). ReAct
prompts LLMs to generate both verbal reasoning traces and actions pertaining to a task in an
interleaved manner, which allows the model to perform dynamic reasoning to create, maintain, and
adjust high-level plans for acting (reason to act), while also interact with the external environments
(e.g. Wikipedia) to incorporate additional information into reasoning (act to reason).
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contribution to performance. By providing both successful and un-
successful examples of A���FL debugging traces on di�cult tests
where the buggy method is not immediately apparent, we highlight
the strengths of A���FL, as well as potential weaknesses that point
to the need for future research.

2 BACKGROUND
This section provides the background and research context.

2.1 LLM Tool Use
By integrating chain-of-thought prompting [31] with the output
of tools, ReAct [38] demonstrated that LLMs were capable of in-
teracting with tools to achieve better performance on tasks. Since
then, LLM interaction with external tools has been widely explored.
HuggingGPT [26] has LLMs compose computer vision pipelines by
dynamically integrating the results of various computer vision mod-
els together. Voyager [28] allows LLMs to store and use acquired
skills in the form of functions, which led Voyager to complete tasks
in a computer game more e�ectively. LLM tool use has also been
explored in software engineering, notably for program repair: Xia et
al. [36] integrated test feedback into the prompt for better APR per-
formance, while Kang et al. [12] allows LLMs to invoke a debugger
to gather information and generate patches.

Recent iterations of OpenAI’s LLMs have embraced this change
and added a feature named function calling.1 This capability en-
ables users to provide function descriptions to the LLM, which can
respond with JSON data containing arguments required for calling
one of the available functions on the digression of the LLM. For in-
stance, if a user wants the LLM to compose a brief greeting email and
send it to Alice, they can provide an API call for sending emails, such
as send_email(receiver, content). The LLM can then respond
with a function call like send_email(�alice@example.com�, �Hi�)
to ful�ll the user’s request. While these functions can serve as ac-
tion executors, there is also the option to provide APIs that the
LLM can query to obtain essential information for responding to
users. For example, when a user inquires about the current weather
in a speci�c city while providing the LLM with a weather API call
description, the LLM has the choice to utilize the API call instead
of o�ering an immediate response. The function call request can be
captured and subsequently processed in an automated manner; the
results obtained from this processing are then communicated back
to the model, enabling seamless and e�cient interaction between
the user side and the LLM. In this context, we intend to de�ne
a set of functions that the LLM can employ to gather necessary
information for debugging purposes.

2.2 Fault Localization
Fault localization (FL) is a critical process in software debugging
that involves identifying speci�c locations in a program’s source
code where bugs are present. Automated FL techniques help de-
velopers save time, particularly in large codebases, by accurately
pinpointing the code locations most likely to be responsible for the
target bug. In addition to aiding manual debugging, FL also plays a
pivotal role in automated program repair techniques by providing
information about potential fault locations [22], thus enabling the
1https://platform.openai.com/docs/guides/gpt/function-calling

generation of e�ective patches. Common FL technique families
include Spectrum-based FL (SBFL), Information Retrieval-based FL
(IRFL), and Mutation-based FL (MBFL) [34]. While SBFL techniques
are known to be the most e�ective as standalone techniques [41],
they require coverage data from both passing and failing tests.
Meeting this requirement poses a challenge, particularly in the
domain of large enterprise software, where coverage measurement
can have high computational costs [4, 9, 15]. Additionally, most FL
techniques lack a rationale or explanation in their output, limiting
their reliability and practicality in real-world debugging scenarios.
As Kochhar et al. [16] note, rationales for FL are crucial for bug
�xing and incorporating practitioners’ domain knowledge. A clear
rationale in FL enables developers to understand why a particular
location is identi�ed as the culprit for the bug, helping them make
informed decisions during the �xing process. Additionally, practi-
tioners expressed their desire to use the provided rationale to assess
the correctness of FL output based on their domain knowledge.

3 APPROACH

📁
💻 get_code_snippet

💻 get_comments

②

① ③

Stage 1 Stage 2

④ ⑤

Codebase

💻 get_class_covered
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⛳
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max. N 
times

AutoFL
Algorithm

Language
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Figure 1: Diagram of A���FL. Each arrow represents a
prompt / response between components, with the circled
numbers indicating the order of interactions. Function invo-
cations aremade atmost N times, where N is a predetermined
parameter of A���FL.

In this paper, we introduce A���FL, a novel automated and
autonomous FL technique that harnesses LLMs to localize bugs in
software given a single failing test. As mentioned earlier, dealing
with large code repositories is a challenge for LLMs, but we tackle
this issue by equipping LLMs with custom-designed functions to
enable code exploration and relevant information extraction.

An overview of A���FL is depicted in Figure 1. We employ a
two-stage prompting process, where the �rst stage involves in-
quiring about the root cause of the given failure, and the second
stage requests output about where the fault location is. In the �rst
stage, 1 A���FL provides a prompt to the LLM containing failing
test information and descriptions of available functions for debug-
ging to LLM. 2 The LLM interacts with the provided functions
autonomously, to extract the information needed for the debugging
of the given failure. 3 Based on the gathered information, the LLM
generates an explanation about the root cause of the observed fail-
ure. In the second stage, 4 the user queries for the location of the
identi�ed bug, and 5 the LLM responds by providing the culprit
method (FL output). In doing so, we can explicitly acquire both the
Root Cause Explanation and Bug Location.

Ask about failing test

Function-based 
Code Navigation

Request LocationExplanation

Location
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Figure 2: Overlap analysis of bugs successfully localized by
the techniques on the �rst rank.

SBFL, while also showing comparable performance in acc@3 and
acc@5 as well. It is noteworthy that A���FL showed comparable
performance to standalone FL techniques that require more soft-
ware artifacts from the developer even though it only uses only
failing tests to identify the fault location. This is in contrast to
other FL techniques which require more software artifacts from the
developer, such as the SBFL techniques DStar and Ochiai, which
generally require passing tests for good performance. In addition,
we �nd that A���FL outperforms the LLM+Test baseline, which
does not retrieve information from the repository, by a substantial
margin (84.0% improved performance on acc@1). This indicates
that the function calls are meaningfully contributing to better FL
performance. Overall, our results indicate that A���FL provides
state-of-the-art standalone fault localization performance and that
these results are made possible by providing the LLM with tools to
explore a repository.

To investigate how SBFL performs using the same artifacts as
A���FL, we compare it against the SBFL-F baseline as well, which
uses only failing tests; we �nd SBFL-F performed substantially
worse than A���FL. Such results demonstrate that A���FL could
provide state-of-the-art FL performance even without a preexisting
test suite unlike existing techniques, underscoring the wide applica-
bility of A���FL. For example, Kang et al. [13] note that 42% of the
top starred Java repositories had no detectable JUnit test suite, and
thus would su�er from low SBFL performance even if a failing test
were provided. On the other hand, A���FL could provide strong
performance even without a pre-existing test suite.

While A���FL achieved better acc@1 performance than the
best previous automatic FL techniques, it may be providing correct
results in a similar set of bugs to existing techniques, in which case
the results of A���FL would be less interesting, and practically
provide little marginal value to a supervised FL technique [19, 27, 37,
41]. We verify that the set of bugs that A���FL correctly localizes
was substantially distinct from the best baseline SBFL technique,
DStar, as shown in Figure 2 (a); more than 40% of the bugs that
A���FL could successfully localize were not correctly localized on
the �rst rank by DStar. Indeed, even when compared to the set of
all baseline techniques that we used, 32 bugs could be uniquely
localized by A���FL (Figure 2 (b)), indicating that its performance
is indeed orthogonal to other techniques.

Figure 3: Performance as more run information is merged
together.

Finally, we present the results of aggregating multiple runs in
Figure 3. As the �gure shows, as the algorithm is rerun and more
results are merged, the performance of A���FL uniformly increases
over all : , signifying that repeat runs can re�ne the rankings and
suggest new locations that were overlooked by previous runs, and
thus improve the performance consistently. Furthermore, the perfor-
mance does not seem to have plateaued, suggesting that more runs
could further improve the performance. These results demonstrate
that our result aggregation algorithm (Section 3.3) is contributing to
improving performance, as a single run alone, while still better than
existing approaches on the acc@1 measure, performs substantially
worse than the merged results (�nding about 40 less locations ac-
curately). Merging can also help improve the precision of A���FL:
in our experiments, when all �ve runs agreed on a bug location,
the likelihood that that location was actually a bug location was
93.5%, suggesting the possibility that such features could be used to
assess the con�dence A���FL has in predictions made, and thereby
reduce developer hassle on false positives.

4.3 Function Call Patterns
In addition to investigating the performance of A���FL relative
to baselines, we inspect how the LLM identi�es fault locations
within the framework of A���FL. First, we analyze the represen-
tative function call patterns in both successful and unsuccessful
runs of A���FL, and present the results in Figure 4. The function
call pattern which had the greatest success rate went as follows:
which classes were covered was retrieved, then which methods
were covered in a class of interest, then three consecutive methods
were observed. A common success pattern was to similarly observe
the code and comments of a target method. It appears that after
such a con�rmation process, A���FL could successfully identify
that the retrieved method was indeed faulty. On the other hand,
when A���FL failed, A���FL either inspected multiple methods
seemingly with no aim until the call budget was met (left), or did
not retrieve any information outside of class coverage and jumped

Kang, An, and Yoo

the LLM suggests EqualsBuilder.append(Object, Object) as
the culprit, which matches the developer patch location.

3.3 Finalizing Fault Localization Results
To address the inherent variability of LLMs, we propose to repeat
the A���FL process ' times (' = 5 in our experiment). After the
repetitions, we consolidate these results into a single FL outcome.
It is worth noting that if there exist multiple failing tests, we use
distinct failing test cases for each run of A���FL. Speci�cally, if
there is just one failing test case, all iterations are conducted with
that speci�c test case. However, when there are several failing
test cases, we adopt a round-robin approach, selecting one failing
test case for each run to ensure the even distribution of iterations.
For clari�cation, if the number of failing test cases exceeds the
prede�ned maximum repetition count, ', we restrict our selection
to only ' failing test cases.

Given the ' predictions generated from A���FL, we aggregate
the outputs to drive a ranked list of suspicious methods. First, we
assign scores to the methods �agged as suspicious byA���FL based
on whether they appear in the �nal predictions generated from
the ' runs. Speci�cally, if a �nal prediction contains a total of =
methods, we give a score of 1/= to each of these identi�ed methods.
These individual scores are then combined across all ' predictions.
To illustrate, supposing that the �nal predictions are {m1, m2},
{m2}, {m2, m3}, {m3}, and {m2, m4} across 5 runs, the score for
method m2 would be calculated as: 0.5 + 1.0 + 0.5 + 0.0 + 0.5 = 2.5
In case of a tie in scores, we prioritize methods that appeared in
earlier predictions over others. For instance, in the given example,
the resulting ranked list would be [m2, m3, m1, m4].

Finally, if there are methods that are not part of the �nal A���FL
results but are covered by the failing test cases, we append them
to the end of the ranked list to ensure the list includes all methods
relevant to the failures. These methods are sorted in descending
order of the number of failing tests covering each method. To break
ties, we give priority tomethods that aremore frequentlymentioned
during the function interaction process of A���FL (Figure 1, 2 ),
based on the intuition that methods that are inspected by the LLM
or related to inspected methods are more likely to be faulty than
methods that were never observed in the debugging process.

4 RESULTS
We present the setup and results of our experiments.

4.1 Experimental Setup
To evaluate how well A���FL could reveal the fault location, we
used the widely-used real-world bug benchmark, Defects4J [11].
We select this benchmark as it has been the subject of multiple fault
localization studies [6, 7, 32], and in particular the comparative
empirical study of Zou et al. [41], which compared the fault localiza-
tion performance of various fault localization families: SBFL [1, 33],
MBFL [21, 24], slicing [29], using the stack trace (Zou et al. [41] pro-
pose predicting methods in the stack based on Schroter et al. [25]),
predicate switching [39], IRFL [40], and history-based fault local-
ization [14]. Of these, IRFL and history-based fault localization are
excluded, as they could not identify any true bug locations as the
most likely fault element in the evaluation of Zou et al. We also

introduce two additional baselines relevant to our work: (i) how
well the same LLM can identify bug locations without any function
calls, i.e. call budget=0 (the LLM+Test baseline), and (ii) SBFL using
only failing tests (the SBFL-F baseline). We con�ne our compar-
isons of A���FL to these standalone metrics to maintain fairness
by limiting the evaluations to unsupervised FL techniques only. As
A���FL does not involve any explicit learning process, we antici-
pate that its outcomes can also serve as a feature for learning-based
FL techniques that combine multiple FL results [19, 27, 37, 41].

Following Zou et al., we use �ve projects from Defects4J (Chart,
Closure, Lang, Math, Time) which together comprise 353 bugs
in total, excluding some bugs that were deprecated to problems
(e.g. problem duplication) in the Defects4J dataset. To make the
comparison fair, we used the research artifact that Zou et al. publicly
shared to derive rankings in an identical setting to ours, namely
using an ordinal tiebreaker instead of the average tiebreaker, and
removing four deprecated bugs from the Defects4J benchmark. For
evaluation, we use the acc@k metrics, which measure the number
of bugs for which any buggy code element was correctly localized
within the top : suggestions; the acc@k metric has the additional
bene�t that it is a closer measure to what developers expect from
FL [16]. As LLM-based FL techniques generate text as the �nal
output instead of pinpointing a location, this text must be matched
with existing methods within the repository. In this work, we check
if the class name, method name, and method arguments of a fault
method all match the predicted method to check if A���FL has
accurately found the fault location. For our experiments, we used
the gpt-3.5-turbo-0613 language model from OpenAI.

4.2 FL Performance

Table 1: A���FL and FL Technique Performance from Zou et
al. [41]

Family Technique acc@1 acc@3 acc@5

Predicate Switching 42 99 121

Stack Trace 57 108 130

Slicing (frequency) 51 96 119

MBFL MUSE 73 139 161
Metallaxis 106 162 191

SBFL
Ochiai 122 192 218
DStar 125 195 216

SBFL-F 34 66 78

LLM-Based LLM+Test 81 94 97
A���FL 149 180 194

The FL performance of A���FL is compared against seven base-
line techniques that showed non-zero performance per Zou et al.
The results of this comparison are presented in Table 1. We �nd
that A���FL could �nd the accurate bug location on its �rst choice
(acc@1) in 149 cases, and that it shows superior performance to
all standalone techniques that it was compared against, including
those from the previously identi�ed best fault localization family
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Fig. 1. Overview of DROIDAGENT with a task example.

have struggled with detecting loading screens, often using
prolonged wait times after each action. The loading screen’s
presence can be identified by checking for loading messages or
icon resource identifiers, and we discovered that the LLMs we
used can quite effectively detect loading screens and decide to
wait. So, instead of a fixed long wait, we let the Actor decide
when to wait. The “back” action is for navigating back, and
the “end task” action allows the Actor to conclude the task
before the fixed max action limit (13 in our experiments).

3) Observing and summarising the outcome(s): The state
of GUI may change after taking an action. DROIDAGENT
updates its perception of a screen with a structured textual
representation (JSON). However, for the Actor to capture the
current task context, it needs to be informed about the outcome
of the previous action. We use a separate Observer agent to
summarise the pertinent outcome of an action based on a diff
of the prior and updated GUI states represented as multi-line
strings. This is because representing both the prior and updated
state would lead to long prompts that may confuse the LLM.

4) Self-critique: The Actor may not always choose the
desired action. Once Actor starts down a wrong path by
initiating an undesirable action, it becomes challenging to
“escape” from that incorrect exploration trajectory. Therefore,
besides offering action results as observations, we incorporate
an additional element called “self-critique” into the Actor
of DROIDAGENT. Periodically (after every three actions in
the experiments), the self-critique element generates feedback
based on the task execution history up to that point and the
current GUI state description. This involves a separate prompt,
which explicitly asks for both a review of the task execution
history and, if the Actor appears to be struggling, a suggested

workaround plan. The prompt is sent to a more advanced
model, GPT-4, while the “main” conversation querying the
next action is handled by GPT-3.5. Consequently, the gener-
ated critique is injected to the Actor’s prompting context for
selecting the next action.

C. Task Reflector

Once a task execution round finishes, either by the Actor
calling the “end task” function or reaching the maximum
action length limit, Reflector is activated to reflect on and
create a concise description of the results of trying to perform
the task (binary label indicating task success or failure as
well). The input to this process is the entire task execution
history including the self-critique and all observations from
the working memory, the current GUI state, and the ultimate
goal (from task planning). We instruct the Reflector to “derive
memorable reflections to help planning next tasks and to
be more effective to achieve the ultimate goal”. We found
that this elaborate reflection process can help avoid that the
overall system “forgets” useful knowledge acquired during
task execution, given that individual agents summarise their
knowledge. We also found that having different agents focused
on specific tasks also helps avoid that involved LLM instances
drifts from their purpose, i.e. starts hallucinating or straying
from their intended function.

D. Memory Retrieval Modules

1) Task Retriever: Long-term memory contains a history
of performed task, i.e. task-specific knowledge as well as
reflections on whether the task succeeded (indicates this task
is supported by the app) or not. DROIDAGENT uses the

Juyeon Yoon

(PhD Candidate)

Prof. Robert Feldt

(Chalmers)
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Agents* are the future…?
(*: and not just advancing foundational models)

• Andrew Ng thinks that agents are the future (https://www.youtube.com/
watch?v=KrRD7r7y7NY) 🥸


• Future SW = Agents driven by LLMs


• Much more than prompt engineering: tool usage, design patterns, multiple 
agents collaborating internally, etc…

https://www.youtube.com/watch?v=KrRD7r7y7NY
https://www.youtube.com/watch?v=KrRD7r7y7NY
https://www.youtube.com/watch?v=KrRD7r7y7NY
https://www.youtube.com/watch?v=KrRD7r7y7NY


Analyzing the future SW :)

• The traditional program analysis:


• Static analysis: requires clearly defined semantics + source code


• Dynamic analysis: requires well formatted input spec + model of execution 
(coverage, dataflow, etc)


• Multi-Agent LLM System:


• Static analysis: semantic behavior exist but no definition + no source code


• Dynamic analysis: input is free form + no model of execution



Moirai 
Three sisters of fate



At the beginning, there are 
inputs.

(Even more important than in traditional SW because…)



How do we develop and test these agents?
(given that we are dependent on foundational models)

• BET: we will all be doing TDD (for now no other ways of anticipating behavior 
of foundation models)


• Step 1: design agent architecture, and fill in prompts


• Step 2: build a reference input set


• Step 3: iterate over step 1 & 2 until we reach a satisfactory fixpoint


• Question: how do we choose the NEXT test input?


• Answer: measure similarity to the reference (=working) input set



Diversity-based Testing of LLM SW Systems
To appear at NEXTA@ICST 2025 (https://arxiv.org/abs/2501.13480)

✅

: reference set

: candidates
✅

w/o selective 
reference set 

w/ selective 
reference set 

Juyeon Yoon
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Then the inputs initiates the 
agent behavior.

(How do we capture and represent the LLM agent execution?)



How do we represent LLM agents as a system?

• No taxation without representation, but also no analysis without 
representation 😎


• However, an execution of LLM agents has the following restrictions:


• Important decision points are made by black boxes (LLMs)


• A single run may not represent the true capability of the system


• Input/output are unstructured



Let’s consider AutoFL as an example

• One inference run of AutoFL is 
essentially a sequence of tool uses 
(i.e., function calls)


• After a fixed number of tool uses, it 
is expected to make a response


• This gives us some sense of control 
flow; however, traditional control 
flow does not reveal much.

Kang, An, and Yoo

contribution to performance. By providing both successful and un-
successful examples of A���FL debugging traces on di�cult tests
where the buggy method is not immediately apparent, we highlight
the strengths of A���FL, as well as potential weaknesses that point
to the need for future research.

2 BACKGROUND
This section provides the background and research context.

2.1 LLM Tool Use
By integrating chain-of-thought prompting [31] with the output
of tools, ReAct [38] demonstrated that LLMs were capable of in-
teracting with tools to achieve better performance on tasks. Since
then, LLM interaction with external tools has been widely explored.
HuggingGPT [26] has LLMs compose computer vision pipelines by
dynamically integrating the results of various computer vision mod-
els together. Voyager [28] allows LLMs to store and use acquired
skills in the form of functions, which led Voyager to complete tasks
in a computer game more e�ectively. LLM tool use has also been
explored in software engineering, notably for program repair: Xia et
al. [36] integrated test feedback into the prompt for better APR per-
formance, while Kang et al. [12] allows LLMs to invoke a debugger
to gather information and generate patches.

Recent iterations of OpenAI’s LLMs have embraced this change
and added a feature named function calling.1 This capability en-
ables users to provide function descriptions to the LLM, which can
respond with JSON data containing arguments required for calling
one of the available functions on the digression of the LLM. For in-
stance, if a user wants the LLM to compose a brief greeting email and
send it to Alice, they can provide an API call for sending emails, such
as send_email(receiver, content). The LLM can then respond
with a function call like send_email(�alice@example.com�, �Hi�)
to ful�ll the user’s request. While these functions can serve as ac-
tion executors, there is also the option to provide APIs that the
LLM can query to obtain essential information for responding to
users. For example, when a user inquires about the current weather
in a speci�c city while providing the LLM with a weather API call
description, the LLM has the choice to utilize the API call instead
of o�ering an immediate response. The function call request can be
captured and subsequently processed in an automated manner; the
results obtained from this processing are then communicated back
to the model, enabling seamless and e�cient interaction between
the user side and the LLM. In this context, we intend to de�ne
a set of functions that the LLM can employ to gather necessary
information for debugging purposes.

2.2 Fault Localization
Fault localization (FL) is a critical process in software debugging
that involves identifying speci�c locations in a program’s source
code where bugs are present. Automated FL techniques help de-
velopers save time, particularly in large codebases, by accurately
pinpointing the code locations most likely to be responsible for the
target bug. In addition to aiding manual debugging, FL also plays a
pivotal role in automated program repair techniques by providing
information about potential fault locations [22], thus enabling the
1https://platform.openai.com/docs/guides/gpt/function-calling

generation of e�ective patches. Common FL technique families
include Spectrum-based FL (SBFL), Information Retrieval-based FL
(IRFL), and Mutation-based FL (MBFL) [34]. While SBFL techniques
are known to be the most e�ective as standalone techniques [41],
they require coverage data from both passing and failing tests.
Meeting this requirement poses a challenge, particularly in the
domain of large enterprise software, where coverage measurement
can have high computational costs [4, 9, 15]. Additionally, most FL
techniques lack a rationale or explanation in their output, limiting
their reliability and practicality in real-world debugging scenarios.
As Kochhar et al. [16] note, rationales for FL are crucial for bug
�xing and incorporating practitioners’ domain knowledge. A clear
rationale in FL enables developers to understand why a particular
location is identi�ed as the culprit for the bug, helping them make
informed decisions during the �xing process. Additionally, practi-
tioners expressed their desire to use the provided rationale to assess
the correctness of FL output based on their domain knowledge.

3 APPROACH

📁
💻 get_code_snippet

💻 get_comments

②

① ③

Stage 1 Stage 2

④ ⑤

Codebase

💻 get_class_covered

💻 get_method_covered
⛳

Coverage

max. N 
times

AutoFL
Algorithm

Language
Model

Figure 1: Diagram of A���FL. Each arrow represents a
prompt / response between components, with the circled
numbers indicating the order of interactions. Function invo-
cations aremade atmost N times, where N is a predetermined
parameter of A���FL.

In this paper, we introduce A���FL, a novel automated and
autonomous FL technique that harnesses LLMs to localize bugs in
software given a single failing test. As mentioned earlier, dealing
with large code repositories is a challenge for LLMs, but we tackle
this issue by equipping LLMs with custom-designed functions to
enable code exploration and relevant information extraction.

An overview of A���FL is depicted in Figure 1. We employ a
two-stage prompting process, where the �rst stage involves in-
quiring about the root cause of the given failure, and the second
stage requests output about where the fault location is. In the �rst
stage, 1 A���FL provides a prompt to the LLM containing failing
test information and descriptions of available functions for debug-
ging to LLM. 2 The LLM interacts with the provided functions
autonomously, to extract the information needed for the debugging
of the given failure. 3 Based on the gathered information, the LLM
generates an explanation about the root cause of the observed fail-
ure. In the second stage, 4 the user queries for the location of the
identi�ed bug, and 5 the LLM responds by providing the culprit
method (FL output). In doing so, we can explicitly acquire both the
Root Cause Explanation and Bug Location.

AutoFL LLM

Initial Prompt or Function Call Results

Next Function Call to make or FL Results



AutoFL LLM

Initial Prompt or Function Call Results

Next Function Call to make or FL Results

Control Data Semantic Flow
Graph Representation for Executions of LLM Agents (under review)
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“Okay, but what use is it?”



Wang’s Assumption about Self Consistency

• Wang et al.’s original intuition: “there are many reasoning paths to the correct 
solutions, but only one way to arrive at a specific incorrect solution”


• My first reaction: “surely there are infinite ways to arrive at a single incorrect 
solution!”


• My second reaction: “oh, it is probably assumed that the LLM is at least 
trying… that is, there are infinite total nonsense ways to arrive at a specific 
incorrect solution, but perhaps fewer ways to move from the question to a 
specific incorrect solution while trying to appear plausible”



A concrete example for AutoFL
(https://arxiv.org/abs/2412.08281)
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1

get_failing_tests_covered_methods_for_class
(EqualsBuilder)

get_failing_tests_covered_classes
()

10

get_code_snippet
(EqualsBuilder.append)

10

get_code_snippet
(EqualsBuilder.isEquals)

9

get_code_snippet
(EqualsBuilder.EqualsBuilder)

get_comments
(EqualsBuilder.append)

Buggy method:
EqualsBuilder.append

1

3

2

4 
1

LIG of Lang-48

Buggy method: “EqualsBuilder.append”

“get_code_snippet (EqualsBuilder.append)”

[1 1 1 1 1]

[0 0 1 0 0]

“get_code_snippet”

Function Type Only (F)

Shape Only (S)

Function Type and Argument (F+A)

[0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 …0]

“get_code_snippet” “EqualsBuilder.append”

Function Type, Argument and Answer (F+A+A)

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 …0]

Denotes answer “EqualsBuilder.append”

Lachesis: Predicting LLM Inference Accuracy using Structural Properties of Reasoning Paths

Naryeong Kim
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Evaluating Wang et al. Hypothesis
Can we predict whether an LLM inference run is correct?

Naryeong Kim

(MSc Candidate)

(a) LSTM (b) GCN (c) AutoFL-S.C.

Fig. 4: ROC-AUC Graphs

TABLE II: Performance of Prediction Models and Baselines

Method Accuracy ROC-AUC Precision Recall

LSTM
F 0.7063 0.7356 0.7570 0.8302
F+A 0.7149 0.6870 0.7662 0.8268
F+A+A 0.7191 0.7557 0.7711 0.8272

GCN
S 0.6900 0.7791 0.7323 0.9182
F 0.7235 0.7866 0.7751 0.8524
F+A 0.7454 0.7723 0.8022 0.8332
F+A+A 0.7454 0.7755 0.8136 0.8172

AutoFL Conf. 0.7610 0.8193 0.8173 0.8306
Baseline 0.6732 - 0.6732 1.0000

of 0.001. We report test accuracy, ROC-AUC, precision, and
recall from the epoch with the highest test accuracy.

B. Results

As shown in Table II, Lachesis achieves performance com-
parable to AutoFL confidence, although AutoFL confidence
slightly outperforms it. A similar trend is observed in ROC-
AUC plots in Fig. 4: the average ROC-AUC from k-fold
evaluation of Lachesis is slightly outperformed by AutoFL
confidence score. However, Lachesis achieves competitive
precision (GCN, F+A+A) and the highest recall (GCN, S). We
argue that the high precision would be better in the expected
use case, as it would also lead to fewer false positives.

We note that both the LSTM and GCN models show a
tendency to perform better as more information about argu-
ments and answers are provided. This may be due to the
fact that the additional information can reveal how AutoFL
gradually narrows down the location of the faults by making
function calls to a specific location. In addition, the GCN,
which provides a more intuitive representation of the structure
between function calls, outperforms the LSTM overall. Thus,
the integration of function call information with structural
information seems to have a synergistic effect.

On the other hand, AutoFL-confidence is not designed to
provide scores specifically for 0.5-threshold binary classifica-
tion, so its calculated classification accuracy, precision, and
recall scores may not serve as fully comparable metrics. As
described before (Section II-A), computing AutoFL confidence
score requires the inference run to finish itself, whereas while
configurations of Lachesis such as F and F+A can perform
well by leveraging limited information. This, in turn, suggests
that predictions based on partial data may be possible, leading
to the possibility of early terminations.

IV. CONCLUSION

We present Lachesis, a predictive model that aims to classify
sets of LLM reasoning paths based on whether they will result
in correct answers or not. Lachesis is based on the hypothesis
behind self-consistency, i.e., there tend to be multiple reason-
ing paths that lead to the correct answer. This allows Lachesis
to predict the correctness of the final answer based on the
structural properties of the reasoning paths. Lachesis achieves
precision of 0.8136 when applied to reasoning of AutoFL,
an LLM-based Fault Localisation technique. Future work will
investigate whether Lachesis can be extended to enable early
termination of LLM inferences that are unlikely to be correct.
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The final fate cuts the thread.

(What does it mean to terminate an LLM inference?)



Cost-Effectiveness Analysis of LLM Agents

• Self-consistency improves performance, but also increases the cost.


• Dependence on closed-source LLM can be a deal-breaker.


• What is the cost-benefit trade-off between more powerful/expensive/
resource-hungry large models and weaker/free/lightweight open source 
models?



COSMOS: Collection of SLMs
LLM4Code 2025 (https://arxiv.org/abs/2502.02908)
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COSMOS w/ AutoFL
LLM4Code 2025 (https://arxiv.org/abs/2502.02908)
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Can we get simpler than ensembles?

• Can we simply decide whether to use a local LLM, or to invoke a remote, 
closed-source LLM?


• In other words, is the current problem easy enough for the lighter model to 
solve, or hard enough to involve the heavier model?


• Voting-based aggregation allows us to mix-up inferences from different LLMs!


• Lachesis/Atropos can play an important role :) 



Early Termination Early Results
After half the steps, it is reasonably accurate.



Conclusion

• There is a new type of software system emerging: a hybrid between semantic 
reasoning of LLMs and tools and actions of traditional SW.


• Developing these systems will require a very different approach from the 
established SE practices.


• We cannot rely on foundational models indefinitely getting better - we need to 
formulate ways to analyze the behavior of new systems, and eventually to 
refine their design and optimize their performance.


