
Physics-inspired Deep Learning
KTAI 콜로퀴움

2024년 10월 28일

Noseong Park
Tenured Associate Professor

School of Computing
Korea Advanced Institute of Science & Technology

noseong@kaist.ac.kr

• Science for Deep Learning
• Why deep learning based on differential equations?
• Physics-inspired deep learning for graphs
• Physics-inspired deep learning for spatiotemporal forecasting

• Deep Learning for Science
• What are Partial Differential Equations
• Deep Learning for solving PDEs

• Conclusion

Contents
2

Science for Deep Learning

What are differential equations?
4

𝒉𝒉 𝑇𝑇 = 𝒉𝒉 0 + �
0

𝑇𝑇 d𝒉𝒉 𝑡𝑡
d𝑡𝑡

d𝑡𝑡

• Let 𝒉𝒉 𝑡𝑡 be a state vector.
• For describing rockets, 𝒉𝒉 𝑡𝑡 = 𝑥𝑥, 𝑦𝑦, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑦𝑦, 𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣, 𝑣𝑣𝑥𝑥𝑦𝑦𝑜𝑜𝑣𝑣𝑜𝑜 .
• For describing COVID-19, 𝒉𝒉 𝑡𝑡 = [𝑠𝑠𝑓𝑓𝑠𝑠𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡𝑣𝑣𝑠𝑠𝑣𝑣𝑣𝑣, 𝑣𝑣𝑜𝑜𝑓𝑓𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣𝑖𝑖, 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑣𝑣𝑖𝑖].

• d𝒉𝒉 𝑡𝑡
d𝑡𝑡

is a differential equation describing how 𝒉𝒉 𝑡𝑡 changes over time.

• People are good at the deductive process of defining d𝒉𝒉 𝑡𝑡
d𝑡𝑡

or 𝜕𝜕𝒉𝒉 𝑥𝑥,𝑦𝑦,𝑧𝑧,𝑡𝑡
𝜕𝜕𝑡𝑡

.

• For instance, one person wrote �⃗�𝐹 = 𝑚𝑚�⃗�𝑎 = d
d𝑡𝑡

𝑚𝑚�⃗�𝑣 = d2

d𝑡𝑡2 (𝑚𝑚𝑓𝑓).

• We are interested in solving the following initial value problem (IVP) to know the
state in the future.

• IVPs are sometime analytically solved.

• However, they exist notoriously difficult cases.
• The Navier-Stokes equation is one of the Millenium problems.
• We then rely on a solver to approximate the solution.

What are differential equations? – contd.
5

𝒉𝒉 𝑇𝑇 = 𝒉𝒉 0 + �
0

𝑇𝑇
𝐌𝐌𝒉𝒉 𝑡𝑡 d𝑡𝑡 = 𝑣𝑣𝐌𝐌T𝒉𝒉 0

𝒉𝒉 𝑇𝑇 = 𝒉𝒉 0 + �
0

𝑇𝑇
𝑓𝑓 𝒉𝒉 𝑡𝑡 d𝑡𝑡

𝒉𝒉 𝑡𝑡 + ℎ = 𝒉𝒉 0 + ℎ𝑓𝑓 𝒉𝒉 𝑡𝑡
𝒉𝒉 𝑡𝑡 + 2ℎ = 𝒉𝒉 𝑡𝑡 + ℎ + ℎ𝑓𝑓 𝒉𝒉 𝑡𝑡 + ℎ

⋮

<Euler discretization>

Deep learning based on diff. eqs.
6

𝒉𝒉 𝑇𝑇 = 𝒉𝒉 0 + �
0

𝑇𝑇
𝑓𝑓 𝒉𝒉 𝑡𝑡 ; 𝜃𝜃 d𝑡𝑡

𝒉𝒉 𝑡𝑡 + ℎ = 𝒉𝒉 0 + ℎ𝑓𝑓 𝒉𝒉 𝑡𝑡 ; 𝜃𝜃

<Euler discretization>

• Many successful deep neural networks are inspired/part of differential equations:
• Neural ODEs are a continuous generalization of ResNet.

Deep learning based on diff. eqs. – contd.
7

𝒉𝒉 𝑇𝑇 = 𝒉𝒉 0 + �
0

𝑇𝑇
𝑓𝑓 𝒉𝒉 𝑡𝑡 ; 𝜃𝜃 d𝑋𝑋

= 𝒉𝒉 0 + �
0

𝑇𝑇
𝑓𝑓 𝒉𝒉 𝑡𝑡 ; 𝜃𝜃

d𝑋𝑋
d𝑡𝑡 d𝑡𝑡

• Many successful deep neural networks are inspired/part of differential equations:
• Neural ODEs are a continuous generalization of ResNet;
• Neural CDEs are continuous recurrent neural networks and generalized state-space models.

Deep learning based on diff. eqs. – contd.
8

• Many successful deep neural networks are inspired/part of differential equations:
• Neural ODEs are a continuous generalization of ResNet;
• Neural CDEs are continuous recurrent neural networks and generalized state-space models;
• Diffusion models are based on diffusion equations.

Deep learning based on diff. eqs. – contd.
9

• Many successful deep neural networks are inspired/part of differential equations:
• Neural ODEs are a continuous generalization of ResNet;
• Neural CDEs are continuous recurrent neural networks and generalized state-space models;
• Diffusion models are based on diffusion equations;
• Poisson process models are based on the Maxwell’s equations.

Deep learning based on diff. eqs. – contd.
10

• Many successful deep neural networks are inspired/part of differential equations:
• Neural ODEs are a continuous generalization of ResNet;
• Neural CDEs are continuous recurrent neural networks and generalized state-space models;
• Diffusion models are based on diffusion equations;
• Poisson process models are based on the Maxwell’s equations;
• Mamba is expected to be a successor to Transformers.

Nanos gigantum humeris insidentes
11

• Even in the era of large models, physical knowledge, written in
the form of diff. eqs., provide us intuitive inductive biases toward
designing effective neural networks.

Neural Ordinary Differential Equations
<Introduction>

13

Plain vs. residual connections
13

14

...

Why are ResNets successful?
14

15

Why are ResNets successful? – contd.
15

16

Why are ResNets successful? – contd.
16

• 𝑇𝑇1 has 100 liters of water, and 𝑇𝑇2 has 100 liters of fertilizer.

• 𝒛𝒛(𝑡𝑡) = (𝑧𝑧1(𝑡𝑡), 𝑧𝑧2(𝑡𝑡)) means the amount of fertilizer at time t.

• When we have an initial value of 𝒛𝒛(0) = (0, 100), what is 𝒛𝒛(2)? This kind of
problem is called initial value problem (IVP) or forward problem.

• Given data, what is 𝑨𝑨? This kind of problem is called backward problem.

100L 100L
3L/min

3L/min

𝑧𝑧1’ = inflow per minute – outflow per minute = − 0.03 𝑧𝑧1 + 0.03 𝑧𝑧2
𝑧𝑧2’ = inflow per minute – outflow per minute = 0.03 𝑧𝑧1 − 0.03 𝑧𝑧2

∴ z ’ = Az or z ’ − Az = 0, where A = −0.03 0.03
0.03 − 0.03

An example of ODEs
17

• Among various ODE solvers,
the (explicit) Euler method is
the simplest method.

• The (explicit) Euler method
and the residual connection
look similar to each other.

Euler method vs. residual connection
18

Runge–Kutta (RK) method
19

https://www.youtube.com/watch?v=HOWJp8NV5xU

https://www.youtube.com/watch?v=HOWJp8NV5xU

• After comparing the RK4 and RK5 results,
• Use a large step-size ℎ if the difference is small.
• Use a small step-size ℎ if the difference is large.

• In other words, the (adaptive) size-size is inversely proportional to the
estimated difference.

• We omit its detailed mathematical definition.

Dormand–Prince (DOPRI) method
20

Continuous ResNet
21

• Solve 𝑦𝑦 = 𝑧𝑧(𝑇𝑇), given the initial
condition 𝑧𝑧 0 = 𝑥𝑥, with a black-box
solver.

• 𝛰𝛰(1) space complexity

• 𝛰𝛰 𝑇𝑇
ℎ

time complexity

• Parametrize 𝑑𝑑𝑧𝑧(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑓𝑓 𝑧𝑧 𝑡𝑡 , 𝜃𝜃(𝑡𝑡) .

• A typical construction of NODEs is as follows: FE  NODE  Output.

• The NODE layer is analogous to (continuous) residual layers.

• We can use the standard backpropagation algorithm to train.

NODE-based image classifier
22

Ultimately want to optimize some loss.

Last hidden vector How to calculate the last hidden vector

𝜕𝜕𝜕
𝜕𝜕𝜕

= ?

How to train
23

• We can use the standard backpropagation to train NODEs.
• However, the depth by DOPRI frequently becomes large.

• We can calculate the gradients with a reverse-mode integral.

• Which one is better?
• In our experience, case by case.

Adjoint sensitivity method
24

Residual network. Adjoint method.

Forward: Forward:

Backward:

Gradients:

Define:

Adjoint State
Adjoint DiffEq

• How to convert the left-hand side to the right-hand side:
• Instead of the step-size ℎ, use an integral with 𝑣𝑣𝑣𝑣𝑚𝑚ℎ 0.

𝜕𝜕𝑍𝑍𝑡𝑡+ℎ
𝜕𝜕𝑍𝑍𝑡𝑡

= (1 + ℎ 𝜕𝜕𝑓𝑓(𝑍𝑍𝑡𝑡)
𝜕𝜕𝑍𝑍𝑡𝑡

)

𝑎𝑎𝑡𝑡 = 𝜕𝜕𝑍𝑍𝑡𝑡+ℎ
𝜕𝜕𝑍𝑍𝑡𝑡

� 𝜕𝜕𝐿𝐿
𝜕𝜕𝑍𝑍𝑡𝑡+ℎ

= (1 + ℎ 𝜕𝜕𝑓𝑓(𝑍𝑍𝑡𝑡)
𝜕𝜕𝑍𝑍𝑡𝑡

)𝑎𝑎𝑡𝑡+ℎ

chain rule

Backward:

Adjoint sensitivity method – contd.
25

Residual network. Adjoint method.

Forward: Forward:

Backward:

Gradients:

Define:

Adjoint State
Adjoint DiffEq

• How to convert the left-hand side to the right-hand side:
• Instead of the step-size ℎ, use an integral with 𝑣𝑣𝑣𝑣𝑚𝑚ℎ 0.

Backward:

Gradients:

chain rule

𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝑍𝑍𝑡𝑡+ℎ

�
𝜕𝜕𝑍𝑍𝑡𝑡+ℎ

𝜕𝜕𝜃𝜃 = 𝑎𝑎𝑡𝑡+ℎ
𝜕𝜕(𝑍𝑍𝑡𝑡 + ℎ𝑓𝑓(𝑧𝑧𝑡𝑡))

𝜕𝜕𝜃𝜃

Adjoint sensitivity method – contd.
26

Backward:

Residual network. Adjoint method.

Forward: Forward:

Backward:

Gradients:

Define:

Gradients:

Adjoint State
Adjoint DiffEq

• How to convert the left-hand side to the right-hand side:
• Instead of the step-size ℎ, use an integral with 𝑣𝑣𝑣𝑣𝑚𝑚ℎ 0.

https://ilya.schurov.com/post/adjoint-method/

Adjoint sensitivity method – contd.
27

https://ilya.schurov.com/post/adjoint-method/

Graph Convolutional Networks
<Introduction>

• Consider a graph G with Laplacian L and a graph signal x on G.

• Signal y = Lx results from multiplying x with the Laplacian.

• Component yi of y is as follows:
yi = ∑j ∈𝒩𝒩𝒩(xi − xj).

• yi measures the difference between x at a node and its neighborhood, i.e.,
difference operator.

Multiplication by the Laplacian
29

• Via xt = −Lx, we say the signal diffuses through the graph, i.e., heat equation.
• xt (or 𝑑𝑑x

𝑑𝑑𝑡𝑡
) stands for the time-derivative of x.

• The Euler method updates the temperature after x(t+h) = x(t) − hLx(t).
• It means a gradient flow which minimizes the Dirichlet energy.

• Temperature at each location is averaged with its neighbors’ temperatures.
• −Lx(t) will be negative (resp. positive) if my temperature is higher (resp. smaller) than those

of neighbors.

Heat diffusion over graph
30

• Let us use the normalized Laplacian �L and h = 1:
x(t+1) = x(t) − �Lx(t) = (I − �L)x(t).

• Therefore, the GCN by Kipf and Welling uses the following diffusion process
augmented with a trainable parameter (or diffusivity) W:

x(t+1) = σ((I − �L)x(t)W), where σ is a non-linear activation.

• At the same time, one can consider that this is a first-order graph filtering
approach.

• Given H = ∑ℓ=0
𝐿𝐿 hℓSℓ, ℓ = 1 and S = I − �L = �A.

Graph convolutional networks [Kipf & Welling, 2017]

31

• Many papers proposed similar approaches based on the diffusion equation-based interpretation
of GCNs, e.g., GRAND [Chamberlain et al., 2021].

• One major drawback of these approaches is oversmoothing.
• All nodes’ last hidden vectors become similar to each other when the number of GCN layers is large

[Chen et al., 2020a].

<Test accuracy of GCN on CORA><Mean Avg. Distance (MAD)>

Oversmoothing problem
32

• The history of GCNs is basically the history of battling with the oversmooting
problem.

• GCNII [Chen et al., 2020b] tries to overcome the problem by i) initial residual connection, and
ii) identity mapping.

x(t+1) = σ((𝛼𝛼(I − �L)x(t) + (1 − 𝛼𝛼)x(0))(𝛽𝛽I + (1 − 𝛽𝛽)W))
• A series of graph sparsification methods have been proposed in [Rong et al., 2019;

Hasanzadeh et al., 2020; Zheng et al., 2020].

• Our answer to this problem is to use reaction-diffusion equations.
• ACMP [Wang et al., 2023] is also based on the Allen-Cahn equation.
• However, we consider more diverse reaction-diffusion equations.

Oversmoothing problem – contd.
33

Overcoming the oversmoothing problem
<Choi et al., GREAD: Graph Neural Reaction-Diffusion Networks, ICML, 2023>

• The reaction-diffusion system is frequently used in chemistry to represent
substances reacting and diffusing over the spatial domain.

• Multiple substances are spreading over the space while transforming into each other and at
the end, a Turing pattern is formed.

Reaction-diffusion equations
35

• In computer vision, it is known that an alternating sequence of the blurring (e.g.,
xt = −�Lx) and sharpening (e.g., xt = �Lx) operations also creates Turing patterns.

Reaction-diffusion equations – contd.
36

• The following visualization (in our ICML paper) also delivers the
intuition of GREAD’s successful node classification.

• Assume a 2D grid network with 1D node signal (red is high signal, blue is low
signal).

<GREAD-BS> <Diffusion Only>

Reaction-diffusion equations – contd.
37

• Given a graph signal X ∈ ℝ𝑁𝑁×𝐷𝐷, GREAD consists of the following three parts:
• Initial embedding layer: H(0) = e(X),

• Reaction-diffusion layer: H(T) = H(0) + ∫0
𝑇𝑇 −α�LH(t) + βr H(t) 𝑖𝑖t,

• Output layer: �y = o(H(T)).

• We also proposed to learn a normalized adjacency matrix �A as in [Li et al., 2018],
and its Laplacian counterpart is �L = (I − �A).

• We use the self-attention method to learn a graph from data.

Graph neural reaction-diffusion networks
38

• Given a hidden signal H(t) ∈ ℝ𝑁𝑁×𝐷𝐷 at time (or layer) t, we apply the blurring
operation:

B(t) = H(t) − �LH(t) = H(t) + (�A − I)H(t) =�AH(t).

• We then apply the following sharpening operation:
H(t+1) = B(t) + �LB(t) = H(t) − �LH(t) + (�A − �A𝟐𝟐)H(t).

• Therefore, our main proposed model, GREAD-BS, is as follows:

H(T) = H(0) + ∫0
T −α�LH(t) + β(�A − �A𝟐𝟐)H(t)𝑖𝑖t.

Blurring-sharpening equations
39

H(T) = H(0) + ∫0
𝑇𝑇 −α�LH(t) + β(�A − �A𝟐𝟐)H(t)𝑖𝑖t

Discretize into L steps with the 4th-order
Runge-Kutta solver

Hidden signal
Hidden signal with

Turing patterns

Architecture of GREAD-BS
40

• We consider 9 homophily and heterophily node classification datasets.
• Neighboring nodes in a graph tend to have the same class label as its homophily rate

increases (or as its heterophily rate decreases).

• We also consider 28 baselines.

• The source codes/datasets and their reproducibility information is at
https://github.com/jeongwhanchoi/gread.

Experimental environments
41

https://github.com/jeongwhanchoi/gread

Experimental results
42

• We also have other experimental results.
• Learning a normalized adjacency matrix �A is better.
• α and β should be vectors in −α�LH(t) + β(�A − �A𝟐𝟐)H(t).

• An optimal T varies in H(T) = H(0) + ∫0
𝑇𝑇 −α�LH(t) + β(�A − �A𝟐𝟐)H(t)𝑖𝑖t.

• An optimal ODE step-size ℎ varies when solving ∫0
𝑇𝑇 −α�LH(t) + β(�A − �A𝟐𝟐)H(t)𝑖𝑖t with RK4.

• GREAD-BS works well irrespective of the homophily rate.

Experimental results – contd.
43

• The self-attention layer consists of a GCN and a residual connection.
• The normalized adjacency matrix (or the attention map) is generated.

• Redesigning the self-attention layer with advanced graph filters leads to non-
trivial enhancements in various domains.

Transformers with graph filters
44

<DeiT on ImageNet-1K>

Overcoming the oversquashing problem
<Choi et al., PANDA: Expanded Width-Aware Message Passing Beyond Rewiring,

ICML 2024>

• The oversquashing problem was introduced in [Alon & Yahav, 2021].
• information from a node’s exponentially-growing receptive field is

compressed into a fixed-size vector

Oversquashing problem
46

<Oversquashing example>

Long-distance dependency + Fast volume growth = Oversquashing

<Accuracy across problem radius (tree depth)>

• Following the study by Alon & Yahav, it became popular to find
indicators for oversquashing and propose rewiring methods.

• The Ricci curvature was used in [Topping et al., 2021].
• In differential geometry, a natural object that allows us to distinguish different

geometries is the Ricci curvature.
• The oversquashing problem is caused by strongly negatively-curved edges.

Oversquashing problem – contd.
47

<Ricci curvature on graphs> <An analogous process of curvature-based graph rewiring>

• Large commute-time distances contribute to oversquashing.
• Spectral rewiring: increase the Cheeger constant of the graph (“clusterdness”)., which leads to

lower commute time [Karhadkar et al., 2022, Arnaiz-Rodríguez et al., 2022].
• Spatial rewiring: inserting edges reduces the total effective resistance of the graph (=commute-

time distance up to scale) [Topping et al., 2021, Deac et al., 2022].

Oversquashing problem – contd.
48

<Effect of different rewiring methods on the graph connectivity in [Di Giovanni et al., 2023]>

• Let us consider an MPNN (GNN) of the following form.
𝒉𝒉𝑣𝑣

ℓ+1 = 𝜙𝜙(ℓ) 𝒉𝒉𝑣𝑣
(ℓ), 𝜓𝜓 ℓ ({𝒉𝒉𝑢𝑢

ℓ : 𝑓𝑓 ∈ 𝒩𝒩(𝑣𝑣)})

• Small Jacobian norms indicate poor information propagations [Di
Giovanni et al., 2023].

• 𝜕𝜕 = depth (number of layers)
• 𝑠𝑠 = width (hidden dimension)
• 𝑧𝑧 = Lipschitz constant
• 𝑤𝑤 = maximum element of weight matrices

Oversquashing problem – contd.
49

Theorem (Sensitivity bound): For any 𝑓𝑓, 𝑣𝑣 ∈ 𝑉𝑉
𝜕𝜕𝒉𝒉𝑣𝑣

(ℓ)

𝜕𝜕𝒉𝒉𝑢𝑢
(0)

1

≤ 𝑧𝑧𝑤𝑤𝑠𝑠 𝐿𝐿 𝑰𝑰 + 𝑨𝑨 𝑖𝑖𝑖𝑖
𝐿𝐿

model topology

• Existing rewiring methods only focus on rewiring that changes the
graph topology to address oversquashing.

• The rewiring methods can inadvertently introduce inaccuracies within
domain-specific contexts.

Limitations of rewiring methods
50

<Potential pitfalls of rewiring in domain-specific graphs>

• Di Giovanni et al. (2023) provide a theoretical justification that
increasing the width of the model (i.e., the hidden size) can also
improve its sensitivity.

• We aim to design a new message passing paradigm that mitigates
oversquashing by selectively expanding the widths of bottleneck
nodes.

Motivations
51

Theorem (Sensitivity bound): For any 𝑓𝑓, 𝑣𝑣 ∈ 𝑉𝑉
𝜕𝜕𝒉𝒉𝑣𝑣

(ℓ)

𝜕𝜕𝒉𝒉𝑢𝑢
(0)

1

≤ 𝑧𝑧𝑤𝑤𝑠𝑠 𝐿𝐿 𝑰𝑰 + 𝑨𝑨 𝑖𝑖𝑖𝑖
𝐿𝐿

model topology
<Bottleneck nodes [Yu et al, 2007]>

• We can define bottleneck nodes as high centrality nodes in terms of
betweenness centrality and so on [Yu et al., 2007, Topping et al.,
2022].

• Increasing the hidden widths of the bottleneck nodes enables
capturing more information.

Proposed method
52

• Our PANDA message passing works in the following way.
• First, we selectively expand widths according to centrality measures.
• Then, our PANDA message passing enables signal propagation among nodes

with different widths (low and high-width nodes).

Proposed method – contd.
53

𝑓𝑓(⋅): A linear transformation that
expands the width of low-dim nodes.

𝑜𝑜(⋅): A dimension selector that selects
dimensions to be propagated from
high-dim nodes to low-dim nodes.

Experimental Results
54

Experimental Results – contd.
55

<PANDA-GCN vs. R-GCN>

<Performance comparison by various centrality measures for PANDA-GCN>

Experimental Results – contd.
56

Empirical sensitivity across layers for GCN on MUTAG.
Compared to other methods, PANDA shows higher
sensitivity that is maintained even in deeper layer.

The amount of signal propagated across the graph
w.r.t. the normalized total effective resistance.
PANDA maintains continuous information flows even
under high bottleneck conditions.

Neural Controlled Differential Equations
<Introduction>

• NCDEs can be understood as continuous-time RNNs [Kidger et al., 2020].
• NCDEs continuously model the hidden state 𝑧𝑧 of RNNs.
• The hidden state changes over time in response to 𝑋𝑋.

Continuous-time recurrent neural networks
58

• Deep SSMs are one of the candidates for the post-Transformer architecture.
• For the past couple of years, there have been notable contributions.
• For some tasks, they outperform Transformers.

• CDEs (in conjunction with the rough path theory) provide theoretical foundations
for deep SSMs [Ciron et al., 2024].

• Many SSM variants are special cases of CDEs.
• Their uniform closure can be characterized by the rough path theory.

• The CDE-based generalization learns path-to-path operators in a balanced
manner since it does not solely rely on the last neural network layer for non-
linear computation.

Generalized selective state-space models
59

Combining the temporal and spatial
processing for traffic forecasting

<Choi et al., Graph Neural Controlled Differential Equations for Traffic Forecasting,
AAAI, 2022>

Motivations
61

• Traffic forecasting has a high impact on our daily lives.
• Many traffic sensors are deployed but often malfunctioning.
• Irregular spatiotemporal observations are ubiquitous.

• We need a novel framework to process them and forecast future traffic
conditions, e.g., traffic volume, speed, etc.

Proposed method
62

• We resort to the neural CDE technology for its
robustness to irregularity.

• Each vertex means a traffic sensor.
• There is a graph of traffic sensors.

Proposed method
63

• 𝐻𝐻(𝑇𝑇) means the set of hidden states of nodes.

• We process each node separately.

Proposed method
64

This is a GCN.

• Given an adjacency matrix, we merge the
hidden state derivatives of nodes, by using GCN
[Kipf & Welling, 2017].

Proposed method
65

<Merge them>

• Two ODEs can be merged into a single ODE.

Experimental environments & results
66

Deep Learning for Science

What are partial differential equations?
68

• The second law of motion �⃗�𝐹 = 𝑚𝑚�⃗�𝑎 = d
d𝑡𝑡

𝑚𝑚�⃗�𝑣 = d2

d𝑡𝑡2 (𝑚𝑚𝑓𝑓), where 𝑓𝑓 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡)
is a coordinate of an object at time 𝑡𝑡 can be extended to other fields, e.g., fluid
dynamics where 𝜌𝜌 replaces 𝑚𝑚.

• The Black-Scholes equation is a Nobel Prize-awarded model for the dynamics of
the European option market.

• The spatiotemporal coordinate (𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) can be replaced with the coordinate 𝑠𝑠, 𝑡𝑡 ,
where 𝑠𝑠 is the underlying asset price.

• Likewise, PDEs are the essential language describing the natural/social/financial
dynamics.

Physics-informed Neural Networks
<Introduction>

• Suppose a regression task to predict the position of a falling ball given time 𝑡𝑡.

• There is one known governing equation that �𝑓𝑓 should follow:

𝑓𝑓𝑡𝑡𝑡𝑡 − 𝑜𝑜 = 0, where 𝑜𝑜 = 9.80665𝑚𝑚/𝑠𝑠𝑠.
• We can use the following loss with no training data:

(�𝑓𝑓 0; 𝜃𝜃 − 0) + (tf.grad(tf.grad(�𝑓𝑓 𝑡𝑡; 𝜃𝜃 , t), t) − 9.80665).

t �𝑓𝑓 Position of ball, x

Query about time 𝑡𝑡?

(x, t) pairs
Training

Data

An example of PINNs
70

• PINNs parameterize both the solution 𝑓𝑓 and the governing equation 𝑓𝑓.
• �𝑓𝑓(𝑥𝑥, 𝑡𝑡; 𝜃𝜃): neural network approximation of the solution 𝑓𝑓(𝑥𝑥, 𝑡𝑡)
• 𝑓𝑓(𝑥𝑥, 𝑡𝑡; 𝜃𝜃): neural network approximation of the governing equation 𝑓𝑓
• The neural network 𝑓𝑓 shares the same network weights with �𝑓𝑓.

• In the case of the inviscid Burgers’ equation, for instance,
𝑓𝑓 𝑥𝑥, 𝑡𝑡, �𝑓𝑓; 𝜃𝜃 = tf.grad(�𝑓𝑓 𝑥𝑥, 𝑡𝑡; 𝜃𝜃 , 𝑡𝑡) + �𝑓𝑓 𝑥𝑥, 𝑡𝑡; 𝜃𝜃 tf.grad(�𝑓𝑓 𝑥𝑥, 𝑡𝑡; 𝜃𝜃 , 𝑥𝑥).

• PINNs train 𝜃𝜃 with the following loss:
• 𝜕𝜕 ≝ 𝑤𝑤𝑓𝑓𝜕𝜕𝑢𝑢 + 𝑤𝑤𝑓𝑓𝜕𝜕𝑓𝑓

• 𝜕𝜕𝑢𝑢 = 1
𝑁𝑁𝑢𝑢

�
𝑖𝑖=1

𝑁𝑁𝑢𝑢
𝑓𝑓 𝑥𝑥𝑢𝑢

𝑖𝑖 , 𝑡𝑡𝑢𝑢
𝑖𝑖 − �𝑓𝑓 𝑥𝑥𝑢𝑢

𝑖𝑖 , 𝑡𝑡𝑢𝑢
𝑖𝑖 ; 𝜃𝜃 2

• 𝜕𝜕𝑓𝑓 = 1
𝑁𝑁𝑓𝑓

�
𝑖𝑖=1

𝑁𝑁𝑓𝑓
𝑓𝑓 𝑥𝑥𝑓𝑓

𝑖𝑖 , 𝑡𝑡𝑓𝑓
𝑖𝑖 , �𝑓𝑓; 𝜃𝜃

2

Training PINNs
71

x
t

�𝑓𝑓(𝑥𝑥, 𝑡𝑡; 𝜃𝜃)�𝑓𝑓

Stabilizing the PINN training
<Kim et al., DPM: A Novel Training Method for Physics-Informed Neural Networks

in Extrapolation, AAAI, 2021>

• 𝜕𝜕𝑢𝑢 converges fast.

• 𝜕𝜕𝑓𝑓 fluctuates and does not decrease below a certain value.
• Recall that governing equations include frequently highly non-linear operators.

• Learning governing equations correctly is a key of PINNs, but what we observed
shows its difficulty.

Motivations
73

• We dynamically modify the gradient to ensure a decrease of 𝜕𝜕𝑓𝑓 if 𝜕𝜕𝑓𝑓 > 𝜖𝜖.

• The gradient 𝑜𝑜 𝑘𝑘 at iteration k is defined as follows:

• The optimal gradient manipulation is analytically solved as follows:

Proposed method
74

𝑜𝑜 𝑘𝑘 =

𝑜𝑜𝐿𝐿𝑢𝑢
𝑘𝑘 , 𝑣𝑣𝑓𝑓 𝜕𝜕𝑓𝑓 ≤ 𝜀𝜀

𝑜𝑜𝐿𝐿
𝑘𝑘 , 𝑣𝑣𝑓𝑓 𝜕𝜕𝑓𝑓 > 𝜀𝜀 ∧ 𝑜𝑜𝐿𝐿𝑢𝑢

𝑘𝑘 � 𝑜𝑜𝐿𝐿𝑓𝑓
𝑘𝑘 ≥ 0

𝑣𝑣∗ + 𝑜𝑜𝐿𝐿
𝑘𝑘 , 𝑣𝑣𝑡𝑡ℎ𝑣𝑣𝑟𝑟𝑤𝑤𝑣𝑣𝑠𝑠𝑣𝑣

.

𝑣𝑣∗ =
−𝑔𝑔𝐿𝐿

𝑘𝑘 �𝑔𝑔𝐿𝐿𝑓𝑓
𝑘𝑘 +𝛿𝛿

∥𝑔𝑔𝐿𝐿𝑓𝑓
(𝑘𝑘)∥2

2 .

Solving Parameterized PDEs
with Meta Learning

<Cho et al., Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed
Neural Networks, NeurIPS, 2023>

• We need to solve many similar problems in real-world applications.

• In the above convection-diffusion-reaction equation, some parameter settings
are trivial to solve with PINNs whereas others are not.

• We need an adaptive-rank framework to solve parameterized PDEs.
• Use simple (resp. complicated) DNNs for easy (resp. difficult) cases.

Motivations
76

Proposed Method
77

Adaptive rank
78

Visualization of solutions
79

• Deep learning based on differential equations provide us novel ways
to design and analyze neural networks.

• GCNs can be enhanced by adopting more complicated hidden dynamics
inspired by physical phenomena.

• NCDEs are generalized forms of various recurrent models and can be
extended to the spatiotemporal processing.

• The current Transformer paradigm, which scales well up to very large models,
costs a lot. We need an alternative paradigm.

• Deep learning can also be used for solving PDEs.
• However, we do not know governing equations in many cases.

Conclusion
80

	Physics-inspired Deep Learning�KTAI 콜로퀴움�2024년 10월 28일
	Contents
	Science for Deep Learning
	What are differential equations?
	What are differential equations? – contd.
	Deep learning based on diff. eqs.
	Deep learning based on diff. eqs. – contd.
	Deep learning based on diff. eqs. – contd.
	Deep learning based on diff. eqs. – contd.
	Deep learning based on diff. eqs. – contd.
	Nanos gigantum humeris insidentes
	Neural Ordinary Differential Equations�<Introduction>
	Plain vs. residual connections
	Why are ResNets successful?
	Why are ResNets successful? – contd.
	Why are ResNets successful? – contd.
	An example of ODEs
	Euler method vs. residual connection
	Runge–Kutta (RK) method
	Dormand–Prince (DOPRI) method
	Continuous ResNet
	NODE-based image classifier
	How to train
	Adjoint sensitivity method
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	Graph Convolutional Networks�<Introduction>
	Multiplication by the Laplacian
	슬라이드 번호 30
	Graph convolutional networks [Kipf & Welling, 2017]
	Oversmoothing problem
	슬라이드 번호 33
	Overcoming the oversmoothing problem�<Choi et al., GREAD: Graph Neural Reaction-Diffusion Networks, ICML, 2023>
	슬라이드 번호 35
	슬라이드 번호 36
	슬라이드 번호 37
	슬라이드 번호 38
	슬라이드 번호 39
	슬라이드 번호 40
	슬라이드 번호 41
	슬라이드 번호 42
	슬라이드 번호 43
	슬라이드 번호 44
	Overcoming the oversquashing problem�<Choi et al., PANDA: Expanded Width-Aware Message Passing Beyond Rewiring, ICML 2024>
	슬라이드 번호 46
	슬라이드 번호 47
	슬라이드 번호 48
	슬라이드 번호 49
	슬라이드 번호 50
	슬라이드 번호 51
	슬라이드 번호 52
	슬라이드 번호 53
	슬라이드 번호 54
	슬라이드 번호 55
	슬라이드 번호 56
	Neural Controlled Differential Equations�<Introduction>
	슬라이드 번호 58
	슬라이드 번호 59
	Combining the temporal and spatial processing for traffic forecasting�<Choi et al., Graph Neural Controlled Differential Equations for Traffic Forecasting, AAAI, 2022>
	슬라이드 번호 61
	슬라이드 번호 62
	슬라이드 번호 63
	슬라이드 번호 64
	슬라이드 번호 65
	슬라이드 번호 66
	Deep Learning for Science
	What are partial differential equations?
	Physics-informed Neural Networks�<Introduction>
	슬라이드 번호 70
	슬라이드 번호 71
	Stabilizing the PINN training�<Kim et al., DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation, AAAI, 2021>
	슬라이드 번호 73
	슬라이드 번호 74
	Solving Parameterized PDEs�with Meta Learning�<Cho et al., Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural Networks, NeurIPS, 2023>
	슬라이드 번호 76
	슬라이드 번호 77
	슬라이드 번호 78
	슬라이드 번호 79
	슬라이드 번호 80

