' 1
1 1
.I 4 k "] a
Physms-bmspl red Deep Lea rnlng
| 1mmaﬂﬂa . '
2024'—=| 102 28 & : | | :
ol
2] A e
Noseong Park 5 | Y e 1Tl
Tenured Associate Professor ' ‘ A A
A School of Computing . 1 el Al A
- Korea Advanced Institute of Saence&TechnoIogy 0 1 | 0
)
““*”‘““"'“‘*‘,“/ noseong@kaist.ac.kr LD Dlee)

‘EingL

Big Data Analytics & Learning Laboratory
Korea Advanced Instttute of Science & Technology

Contents

* Science for Deep Learning
* Why deep learning based on differential equations?
* Physics-inspired deep learning for graphs
* Physics-inspired deep learning for spatiotemporal forecasting

* Deep Learning for Science
 What are Partial Differential Equations
* Deep Learning for solving PDEs

* Conclusion

I -
Q4

4 O

-

What are differential equations?

* Let h(t) be a state vector.
* For describing rockets, h(t) = [x, y, velocity, fuel, oxygen].
* For describing COVID-19, h(t) = [susceptible,infected, recovered].

. dh(t)
dt

* People are good at the deductive process of defining

is a differential equation describing how h(t) changes over time.

dh(t) oh(x,y,zt)
or .
dt ot

. = - d - d? —
* Forinstance, one person wrote F' = md = — (m?) = — (mi).

* We are interested in solving the following initial value problem (IVP) to know the
state in the future.

dt

Tdh
h(T) = h(0) + j dit)
0

What are differential equations? — contd.

* |VPs are sometime analytically solved.

T
h(T) = h(0) + j Mh(t)dt = eMTh(0)
0

 However, they exist notoriously difficult cases.
* The Navier-Stokes equation is one of the Millenium problems.
* We then rely on a solver to approximate the solution.

T
h(T) = h(0) + j f(h(t))dt
0

<Euler dis{retization>

h(t + h) = h(0) + hf (h(t))
h(t + 2h) = h(t + h) + hf (h(t + h))

Deep learning based on diff. egs.

* Many successful deep neural networks are inspired/part of differential equations:

* Neural ODEs are a continuous generalization of ResNet.

Residual Network ODE Network

5 5
= .
4 8 h(T) = h(0) + j f(h(t); 0)dt
y - - 0

<Euler dis<,retization>

” / h(t + h) = h(0) + hf (h(t); 0)

-5 0 5 -5 0 5
Input/Hidden/Output Input/Hidden/Output

Deep learning based on diff. egs. — contd.

* Many successful deep neural networks are inspired/part of differential equations:
* Neural ODEs are a continuous generalization of ResNet;
* Neural CDEs are continuous recurrent neural networks and generalized state-space models.

m Hidden state z

:TTTT:IIII'I: b T

SHAT I E R(T) = hO) + [f(R(e); 0)dX
SRR | — k) + | f(R@;0) e
1 ks e Tn Data x

*—e ° ° > Time

Deep Iearnin"g based on diff. egs. — contd.

* Many successful deep neural networks are inspired/part of differential equations:
* Neural ODEs are a continuous generalization of ResNet;
* Neural CDEs are continuous recurrent neural networks and generalized state-space models;
* Diffusion models are based on diffusion equations.

Forward SDE (data — noise)
@ dx = £(x, £)dt + g(t)dw >@
\ i FES "o
o o Scorenc |o .
dx = [f(x,t) — ¢° (¢)Vx log p; (x)]| dt + g(t)dw @

Reverse SDE (noise — data)

SREET

Deep Iearnin"g based on diff. egs. — contd.

* Many successful deep neural networks are inspired/part of differential equations:
* Neural ODEs are a continuous generalization of ResNet;
* Neural CDEs are continuous recurrent neural networks and generalized state-space models;
* Diffusion models are based on diffusion equations;
* Poisson process models are based on the Maxwell’s equations.

°4,
=€ 2 $
BT L
(LI - ° .0 B % e
R DAL RS <IN
s La 0 ST Cept e, b i
.’tﬂ%‘. a{sc‘ * %, ‘Z‘ . c:E :..:: . *)n
PO tetes g fLecet T =
i T . s *s A . . 8,
dx = —E(x)dt TR S i
— o %p % o I
HEL %3 X & ;» K :h
$. . 5 f e .' o
e%ss -
"9 g ot n & -:;
anec? oo e
f . ® P e ’ °a:::z
% : o
o g

* Many successful deep neural networks are inspired/part of differential equations:

* Neural ODEs are a continuous generalization of ResNet;

* Neural CDEs are continuous recurrent neural networks and generalized state-space models;
* Diffusion models are based on diffusion equations;

* Poisson process models are based on the Maxwell’s equations;

 Mamba is expected to be a successor to Transformers.

H(t) = Ah() + Bx(t) (1a) h = Ah_, +Bx, (2a) K= (CB.CAB... CAB..) (3)
y(t) = Ch(t) (1b) yi=Ch (2b) y=x % K (3b)

Discretization. The first stage transforms the “continuous parameters” (A, A, B) to “discrete parameters” (Z, E)

through fixed formulas A = f4(A, A) and B= fe(A, A, B), where the pair (f4, fg) is called a discretization rule.
Various rules can be used such as the zero-order hold (ZOH) defined in equation (4).

A=exp(AA) B =(AA)Yexp(AA)—1I)-AB @)

Nanos gigantum humeris insidentes

° R o
Even in the era of large models, physical knowledge, written in }%n_mf%ﬁmfw

the form of diff. eqgs., provide us intuitive inductive biases toward i
designing effective neural networks.

¢ da ﬂmam VN e
!35' P P busfel
wnve-onddieSem sotes G0 e
et - pn dnien Redit et u,,c—:iw,,
" L1

Shad (fish) Dolphin (mammai) i
|
Puffin (bird) | | e W@%ﬁﬁ%

Neural Ordinary Differential Equations

<Introduction>

Plain vs. residual connections

* Plaint net
*
weight layer
anytwo
stacked layers l relu

weight layer

relu
H(x) '

* Residual net

X
4
weight layer
F(x) v relu identity
weight layer X

Hx)=F(x)+x

Why are ResNets successful?

X141 = x; + F(xp)

\ 4

Xixo = X141 + F(X741) Xip2 = X1+ F(x;) + F(xp41)

L—1
X; = X +ZF(xi)
i=1

Why are ResNets successful? — contd.

L—1
X, = Xj +ZF(xi)
1=l

OE
" 0x;
L—1
JE O0E d0x; OF -0
a_pq - 0x; 0x; a_xL(1 - Ox; Z Fxi) OE

Why are ResNets successful? — contd.

Building block

(a) Conventional 3-block residual network (b) Unraveled view of (a)

An example of ODEs

* T, has 100 liters of water, and T, has 100 liters of fertilizer.

* Z(t) = (z.(t), z,(t)) means the amount of fertilizer at time t.

z1’ = inflow per minute — outflow per minute = — 0.03 z; + 0.03 z,
Z," = inflow per minute — outflow per minute = 0.03 z; — 0.03 z,

0.03 0.03
03 —0.03

Sz =Azorzg’ — Az=0, where A = [(:

100L

100L

3L/min

* When we have an initial value of z(0) = (0, 100), what is z(2)? This kind of

problem is called initial value problem (IVP) or forward problem.

* Given data, what is A? This kind of problem is called backward problem.

Fuler method vs. residual connection

2 dz
« Among various ODE solvers, Problem to solve: z(2) = z(0) +/U f(z(t), t)dt, where f(z(t),t) = dEtt)

the (explicit) Euler method is
the simplest method.

Solve with the Euler method: z(h) = z(0) + h x f(z(0),0)
z(2h) = z(h) + h x f(z(h),h)

e The (explicit) Euler method
and the residual connection
look similar to each other. ‘

Runge—Kuttaﬂ (RK) method

Now pick a step-size A~ > 0 and define

1
Ynt+1l = Yp + —h(kl -+ 2k2 -+ Zkg -+ k4),

6
tn—l—l =1n +h

forn=0,1,2,3, .., using’®!
kl — f(tnsyﬂ.)a

h kq
2 — n o1 dgn h— 9
ko f(t —|—2 Yn + 2)
h ko
kS — f(tn_i_iayﬂ"l'h?):

ki = f(tn + h,yn + hks).

Yo+ hk3

y0+hk2/2
y0+hk1/2

Yo ¢

to to+h/2 to+h

https://www.youtube.com/watch?v=HOWJp8NV5xU

Y

https://www.youtube.com/watch?v=HOWJp8NV5xU

Dormand—Prince (DOPRI) method

e After comparing the RK4 and RKS5 results,
e Use a large step-size h if the difference is small.
* Use a small step-size h if the difference is large.

* In other words, the (adaptive) size-size is inversely proportional to the
estimated difference.

e We omit its detailed mathematical definition.

Continuous ResNet

* Solve y = z(T), given the initial

condition z(0) = x, with a black-box 5R351dual Network . ODE Network
solver. 5
* 0(1) space complexity 4 4=
! [i -
e 0 (ﬁ) time complexity EE EEL
. dz(t) a, l PSS
* Parametrize —= = f(z(t),8(t)). t
1 1: L
0—=5""% 5 0==5% 5

Input/Hidden/Output Input/Hidden/Output

NODE-based image classifier

* A typical construction of NODEs is as follows: FE - NODE - Output.
 The NODE layer is analogous to (continuous) residual layers.

* We can use the standard backpropagation algorithm to train.

T
)

Training
Data

(x,y)

2
2(2) = 2(0) + fo F(a(t), t;0)dt

Y ‘

£(2(0),0;0) ‘ f((1),1;0) A

Featuria 3;:raction > 2(0) dz(t) ° z(1) dz(t) ° z(2) > Output layer —» Loss
dt li=0 dt =1

|
<: Backpropagation

How to train'

Ultimately want to optimize some loss.

to

L(z(T)) =L (z(to) + Tf(z(t),t,@)dt) = L (ODESolve(z(to), to,T,0))

Last hidden vector How to calculate the last hidden vector

oL _9
90

Adjoint sensi'tivity method

* We can use the standard backpropagation to train NODEs.
* However, the depth by DOPRI frequently becomes large.

* We can calculate the gradients with a reverse-mode integral.

* Which one is better?

* |n our experience, case by case.

Adjoint sensitivity method — contd.

* How to convert the left-hand side to the right-hand side:
* Instead of the step-size h, use an integral with lim; 5 ,.

. .. oL
Residual network, a; = S—L Adjoint method Define: a(t) := "0
<t
. . t+1
Forward: . . — o, 4+ hf(z) Forward: 2(t41) = 2(t) + f(z(t)) dt
aZt+h — (1 + haf(zt)) t
0Z; Zt
t
t
0Z¢rn _OL 9f (Zt) Backward: a(t) = a(t+1) + / alt) a];(ji)» v
At = 0Z; 0Z4n =({1+h dZ;)Ar+n Adjoint State o Adjoint DIffE
joint Di
chain rule

Gradients: 3_L:/t+1 a(t)ﬁf(z(t%@)

. 0z f(z
Backward: g, = =4t m-(”h :)) h 0

Adjoint sensitivity method — contd.

* How to convert the left-hand side to the right-hand side:
* Instead of the step-size h, use an integral with lim; 5 ,.

. . . OL
Residual network. a; 1= oL Adjoint method. Define: a(t) :=
azt 6Z(t)
. . t+1
Forward: .) = 2 + hf(z) Forward: . 4 1y — 2 + et a
Backward: ay = A¢4-p T hCLH_h 822Zt)
t ¢
. 0f(2(t))
Backward: =a(t+ 1 t dt
o (00 amn] oeniey | B a0 =atins [a0 55
= . = Qtyn Adjoint State
00 |0Z;, 00 a0 Adjoint DiffEq
chain rule
Gradients: 0L /tJrl alt) of (z(1),0) gt
Gradients: 9L 0f (2(t), 0) o0 J, 00

a0 = T

Adjoint sensitivity method — contd.

https://ilya.schurov.com/post/adjoint-method/

* How to convert the left-hand side to the right-hand side:
* Instead of the step-size h, use an integral with lim, s .

Residual network o = O
52’,5
Forward: Zivh = 2t + hf(2¢)
Backward: ¢, = a4yp, + hat+h8f(zt)
8zt
ients: 9L 0f(2(t),9)
Gradients: = _ ;
g6 ~ T 5p

Adjoint method Define: a(t) := aift)
Forward: A+ 1) = 2(t) + . f(z(t)) dt

t

a(t+1) + /t Ll a];%?) dt

Adjoint DiffEq

Backward: a(t)

Adjoint State

Gradients:

Y R (EO

https://ilya.schurov.com/post/adjoint-method/

Graph Convolutional Networks

<Introduction>

Multiplication by the Laplacian

e Consider a graph G with Laplacian L and a graph signal x on G.
* Signal y = Lx results from multiplying x with the Laplacian.
* Componentyj of yis as follows:

Vi = Zjeni(®j — Xj).

* yj measures the difference between X at a node and its neighborhood, i.e.,
difference operator.

Labelled graph Degree matrix Adjacency matrix Laplacian matrix

/200000y 010010\ /2-1 0 0-1 0)

e 030000 1 01010 1 3 -1 0 -1 0
oo'o 00200 0 01010 0 -1 2 -1 0 0
. 000300 001011 0 0 -1 3 -1 -1
ee 0000 30 1 1010 1 -1 0 -1 3 0
\o 0o o oo 1/ \ooo100/ \o o o -1 0o 1/

Heat diffusiohn over graph

* Via X, = —Lx, we say the signal diffuses through the graph, i.e., heat equation.
* X, (or Z—)f) stands for the time-derivative of x.
* The Euler method updates the temperature after x(t+h) = x(t) — hLx(t).

* It means a gradient flow which minimizes the Dirichlet energy.

 Temperature at each location is averaged with its neighbors’ temperatures.

« —Lx(t) will be negative (resp. positive) if my temperature is higher (resp. smaller) than those
of neighbors.

Graph convolutional networks ixipf & welling, 2017]

e Let us use the normalized Laplacian L and h = 1:
x(t+1) = x(t) — Lx(t) = (I — L)x(t).
* Therefore, the GCN by Kipf and Welling uses the following diffusion process
augmented with a trainable parameter (or diffusivity) W:
x(t+1) = o((I — L)x(t)W), where o is a non-linear activation.

* At the same time, one can consider that this is a first-order graph filtering
approach.

« GivenH=Y%_,h,8,¢=1andS=1-L=A

Oversmoothing problem

* Many papers proposed similar approaches based on the diffusion equation-based interpretation
of GCNs, e.g., GRAND [Chamberlain et al., 2021].

* One major drawback of these approaches is oversmoothing.
* All nodes’ last hidden vectors become similar to each other when the number of GCN layers is large
[Chen et al., 2020a].

Pearson:0.986™*

1.0
ARMA RUEGZRIVRCIRBEEDIE 0.305 | 0.004 0.8 — Acc

-== MADGap
ChebGCN RONETAINONZAN 0.138 0.024 0.018 0.8 0.7 ===y
] ~
DNA 0.665 0472 0.09 06 M
FeaSt IRaCREREONN gl 0.182 0.072 0.6 ot
s cAT NORAYRENAYE 0232 0.047 0.005
-8 0.4 0.4
= ol 0.796 | 0.765 | 0.714 | 0.602 [OFLE]
0.3 \
GGNN JONCEM 0.078 0.021 0.033 0.039 | o2 \\
0.2
GraphSAGE [CZERIVEICRNGG:N 0.303 0.053 ‘\
\
HighOrder BOZEM 0.145 0.023 0.004 0.012 -0.0 0.1 -
\
HyperGraph [RUGCZERRONZYRNON CEN 0.046 0.023 0.0 1
5 3 9 5 P --02 1 2 3 4 5 6

#Model Layer (a) # Model Layer

<Mean Avg. Distance (MAD)> <Test accuracy of GCN on CORA>

Oversmoothing problem — contd.

* The history of GCNs is basically the history of battling with the oversmooting
problem.
®* GCNII [Chen et al., 2020b] tries to overcome the problem by i) initial residual connection, and
ii) identity mapping.
x(t+1) = o ((a(- Dx(1) + (1 — @)x(0)) (B1 + (1 — HIW))
* Aseries of graph sparsification methods have been proposed in [Rong et al., 2019;
Hasanzadeh et al., 2020; Zheng et al., 2020].
* Our answer to this problem is to use reaction-diffusion equations.
* ACMP [Wang et al., 2023] is also based on the Allen-Cahn equation.
* However, we consider more diverse reaction-diffusion equations.

Overcoming the oversmoothing problem

<Choi et al., GREAD: Graph Neural Reaction-Diffusion Networks, ICML, 2023>

Reaction-diffusion equations

* The reaction-diffusion system is frequently used in chemistry to represent
substances reacting and diffusing over the spatial domain.

* Multiple substances are spreading over the space while transforming into each other and at
the end, a Turing pattern is formed.

Reaction-diffusion equations — contd.

* In computer vision, it is known that an alternating sequence of the blurring (e.g.,
X, = —Lx) and sharpening (e.g., X, = LX) operations also creates Turing patterns.

Reaction-diffusion equations — contd.

* The following visualization (in our ICML paper) also delivers the
intuition of GREAD’s successful node classification.

* Assume a 2D grid network with 1D node signal (red is high signal, blue is low
signal).

EﬂEKD-§_§> : ﬂ Ep:ffusion_Bnly; ﬂ
n I || n I ||

ey 2 ey 2

1 .II || 1 .II ||
II. II.
I I I I

Graph neur:"al reaction-diffusion networks

* Given a graph signal X € R¥*P, GREAD consists of the following three parts:
* Initial embedding layer: H(0) = e(X),
+ Reaction-diffusion layer: H(T) = H(0) + f, —aLH(t) + Br(H(t)dt,
* Output layer: ¥ = o(H(T)).
* We also proposed to learn a normalized adjacency matrix A as in [Li et al., 2018],

and its Laplacian counterpartis L = (I — Z\).
* We use the self-attention method to learn a graph from data.

Blurring-sharpening equations

e Given a hidden signal H(t) € R¥*P at time (or layer) t, we apply the blurring
operation:

B(t) = H(t) — LH(t) = H(t) + (A — DH(t) =AH(t).
* We then apply the following sharpening operation:
H(t+1) = B(t) + LB(t) = H(t) — LH(t) + (A — A%)H(t).
* Therefore, our main proposed model, GREAD-BS, is as follows:

H(T) = H(0) + J, —aLH(t) + B(A — A2)H(t)dt.

Architecture of GREAD-BS

Hidden signal with

Hidden signal Turing patterns
; ‘ Initial Diffusion Reaction ; Output |
X Embedding H(()) _)r[(Blurring) (Sharpening) }_‘ H(T) Layer y
rH(t) 0] (H())1 if Fisher (F) B e e e eSS A SRS EESEAEAEAEARAEANAKARRARRSEnEnES

H(t) ® (1 — H(t)°?), if Allen-Cahn (AC) irDlscretlze into L steps with the 4th-order 1i

H(t) ® (H(t) — H(t)°?), if Zeldovich (Z) i Runge-Kutta solver |
I‘(H(t)) — (A AE)H(), if Blurring-Sharpening (BS) o

H(0), if Source Term (ST) (T) H(O) -|- f —O(LH(t) + B(A AZ)H(t)dt

LH(t), if Filter Bank (FB)

(
| LH(¢) + H(t), if Filter Bank* (FB*)

Experimental environments

* We consider 9 homophily and heterophily node classification datasets.

* Neighboring nodes in a graph tend to have the same class label as its homophily rate
increases (or as its heterophily rate decreases).

 We also consider 28 baselines.

* The source codes/datasets and their reproducibility information is at
https://github.com/jeongwhanchoi/gread.

Table 3. Benchmark dataset properties and statistics

Dataset Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer PubMed

Classes 5 5 5 5 5 5 6 7 3
Features 1,703 1,703 1,703 932 2,089 235 1,433 3,703 500
Nodes 183 251 183 7.600 5,201 2,277 2,708 3,327 19,717

Edges 279 466 277 26,752 198,353 31,371 5,278 4,552 44324
Hom. ratio 0.11 0.21 030 022 0.22 0.23 0.81 0.74 0.80

https://github.com/jeongwhanchoi/gread

Experimental results

Table 2. The average ranking/accuracy and the Olympic ranking

of some selected high-performing models on 9 real-world datasets.
“*” (resp. ‘17) indicates that an improvement over GloGNN (resp.

ACM-GCN) is statistically significant (p < 0.05) under the
Wilcoxon signed-rank test.

Method Average Olympic Ranking
Ranking Accuracy Gold Silver Bronze

GREAD-BS 1.56 76.64°7 5 & 0
GREAD-FB* 6.72 74.511 0 0 3
GREAD-F 7.50 74.13 1 1 1
GloGNN 8.17 74.99 0 0 1
GREAD-AC 8.50 73.71 1 0 0
ACM-GCN 8.67 74.92 0 1 0
GGCN 9.50 75.05 0 1 0
Sheaf 10.33 75.06 1 1 0

Table 4. Results on real-world datasets: mean = std. dev. accuracy for 10 different data splits. We show the best three methods in red

(first), blue (second), and purple (third). Other missing 16 baselines are in Appendix B.

Dataset Texas

Wisconsin Cornell

Film Squirrel

Chameleon

Cora

Citeseer

PubMed

Avg.

Geom-GCN
H2GCN
GGCN
LINKX
GloGNN
ACM-GCN

66.7642.72
84.86+7.23
84.86+4.55
74.60+8.37
84.32+4.15
87.84+4.40

64.51+3.66 60.54+367
87.65+4.98 82.70+5.28
86.86+3.29 85.68+6.63
75.49+572 77.84+581
87.06+3.53 83.51+4.26
88.43+3.22 85.14+6.07

31.59+1.15 38.15+092
35.70+1.00 36.48+1.86
37.54+1.56 55.17+1.58
36.10+1.55 61.81+1.80
37.35+1.30 57.54+1.39
36.28+1.09 54.40+1.88

60.00+2.81
60.11+£2.15
T1.14+1.84
68.42+1.38
69.78+2.42
66.93+1.85

85.35+1.57
87.87+1.20
87.95+1.05
84.64+1.13
88.31+1.13
87.91+095

78.02+1.15
77.11+£1.57
T7.1441.45
73.194+0.99
T7.41+1.65
77.32+1.70

89.954047
89.49+0.38
89.154+037
87.86+0.77
89.62+40.35
90.00+0.52

63.87
71.33
75.05
71.11
74.99
74.92

GCNII 77.57+3.83

80.39+3.40 77.86+3.79

37.44+1.30 38.47+1.58

63.86+3.04

88.37£1.25

77.334£1.48

90.154043

70.16

CGNN
GRAND
BLEND

Sheaf

GRAFF

71.35+4.05
75.68+7.25
83.24+4.65
85.05+5.51
88.38+4.53

74.31+7.26 66.22+7.69
79.41+3.64 82.16+7.09
84.12+3.56 85.95+6.82
890.414+4.74 84.86+4.71
87.45+294 83.24+6.49

35.95+0.86 29.24+1.09
35.62+1.01 40.05+1.50
35.63+1.01 43.06+1.39
37.81+1.15 56.34+1.32
36.09+0.81 54.52+1.37

46.89+1.66
54.67+2.54
60.11+2.09
68.04+1.58
71.08+1.75

87.10+£1.35
87.36+0.96
88.09+1.22
86.90+1.13
87.61+097

76.91+1.81
76.46+1.77
76.63+1.60
76.70+£1.57
76.92+1.70

87.70+049
89.02+0.51
89.24+042
89.49+040
88.95+0.52

63.96
68.94
71.79
75.06
74.92

GREAD-BS
GREAD-F
GREAD-AC 85.95+2.65
GREAD-Z 87.30+5.68
GREAD-ST 81.08+5.67
GREAD-FB 86.76+5.05
GREAD-FB* 87.03+3.97

88.9243.72
89.73+4.49

89.4143.30 86.49+7.15
86.47+4.84 86.49+5.13
86.08+3.56 87.03+4.95
86.29+4.32 85.68+5.41
86.67+3.01 86.22+5098
87.65+3.17 86.22+585
88.04+1.63 85.95+5.64

37.9041.17 59.22+1.44
36.72+0.66 46.16+1.44
37.21+1.10 45.10+2.11
37.01+1.11 46.25+1.72
37.664+0.90 45.83+1.40
37.40+0.55 50.83+227
37.704+0.51 50.57+1.52

71.38+1.31
65.204+1.40
65.09+1.08
62.70+2.30
63.03+1.32
66.05+1.21
65.83+1.10

88.574+0.66
88.39+0.91
88.29+0.67
88.31+1.10
88.474+1.19
88.03+0.78
88.01+0.80

77.60+1.81
77.404+1.54
77.38+1.53
77.39+1.90
77.25+1.47
T7.28+1.73
77.4241.93

00.23+0.55
90.09+0.31
90.10+0.36
90.11+0.27
90.13+0.36
90.07+0.45
90.08+0.46

76.64
74.13
73.71
73.45
72.93
74.48
74.51

Experimental results — contd.

* We also have other experimental results.

* Learning a normalized adjacency matrix A is better.

a and {3 should be vectors in —aLH(t) + B(A — A?)H(t).

An optimal T varies in H(T) = H(0) + fOT —aLH(t) + B(A — A2)H(t)dt.
An optimal ODE step-size h varies when solving fOT —aLH(t) + B(A — A2)H(t)dt with RK4.
GREAD-BS works well irrespective of the homophily rate.

100 ¥H2GCN @#BLEND =
GRAND “ GREAD-BS ~—~

oo
o

—

i
A]

()]
o

Test accuracy

POz
. ’ —.. } ""ﬂ-
‘=~';t;*:$fﬂ‘*--‘"t »

o~

7 & eMLP -GAT
40129 o ®GCN#GCNII

0.00 0.25 050 0.75 1.00
Homophily rate

Transformers with graph filters

* The self-attention layer consists of a GCN and a residual connection.

* The normalized adjacency matrix (or the attention map) is generated.
X Wiey (X quy) T
Vd

* Redesigning the self-attention layer with advanced graph filters leads to non-
trivial enhancements in various domains.

SA(X) = softmax()Xanl = AXW,y

Automatic Speech Causal Language
Recognition Modeling
1o — Jos Do (LibriSpeech 960h) (PTB)
o —DeiT + GFSA 37 — DeiT + GFSA 19.45
Sos .08 3 231
g = & Image 9151 Natural Language
206 06 506 Classfication Understanding
5 o @ (ImageNet-1k) g1, 9.8 60.34\ \64.11 (COLA)
Hoa4 2 3
g 3 0.4 é 0.3
502 . eDeiT £ —Backbones
0.0 ' #DeiT + GFSA| = 0.01 ~— o119 — * GFSA
-100 -50 0 50 100 1 6 12 18 24 0 50 100 150
; Code Graph
F Layer Ind Singular Value Ind
reauency ayerindex inauiar Yalue fndex Classification Classification
(a) Filter response (b) Cosine similarity (¢) Singular value (Devign) (ZINC)

<DeiT on ImageNet-1K>

Overcoming the oversquashing problem

<Choi et al., PANDA: Expanded Width-Aware Message Passing Beyond Rewiring,
ICML 2024>

Oversquashing problem

* The oversquashing problem was introduced in [Alon & Yahav, 2021].

* information from a node’s exponentially-growing receptive field is
compressed into a fixed-size vector

1_ :
0.9 1;_0 1:0 Qe
0.8 TN el
8'% T ARG

Ace 05 e G wam | \ B gz
0’3 |—@ GAT (train) | NV 5,

0.2 |-0— GIN(train) | ... ' S C
0.(13 —A— GCN (train) : Y14 009505
2 3 4) 6 7 8

r (the problem radius)
<Oversquashing example> <Accuracy across problem radius (tree depth)>

Long-distance dependency + Fast volume growth = Oversquashing

Oversquashing problem — contd.

* Following the study by Alon & Yahavy, it became popular to find
indicators for oversquashing and propose rewiring methods.

* The Ricci curvature was used in [Topping et al., 2021].

* |n differential geometry, a natural object that allows us to distinguish different
geometries is the Ricci curvature.

* The oversquashing problem is caused by strongly negatively-curved edges.

7 .
> A
V PP |
A e, "r = 4
<{ % B
> i
A \

Clique (>0) Grid (=0) Tree (<0)

<Ricci curvature on graphs> <An analogous process of curvature-based graph rewiring>

Oversquashing problem — contd.

* Large commute-time distances contribute to oversquashing.

» Spectral rewiring: increase the Cheeger constant of the graph (“clusterdness”)., which leads to
lower commute time [Karhadkar et al., 2022, Arnaiz-Rodriguez et al., 2022].

» Spatial rewiring: inserting edges reduces the total effective resistance of the graph (=commute-
time distance up to scale) [Topping et al., 2021, Deac et al., 2022].

Base Graph Spatially Rewired Graph Spectrally Rewired Graph i
(; 0

<Effect of different rewiring methods on the graph connectivity in [Di Giovanni et al., 2023]>

Commute Time

Oversquashing problem — contd.

* Let us consider an MPNN (GNN) of the following form.
R = 6@ (Y, pO((hY:u € N (v)])

* Small Jacobian norms indicate poor information propagations [Di
Giovanni et al., 2023].

» L = depth (humber of layers) Theorem (Sensitivity bound): Foranyu, v € V

)
- . . . ah
* p = width (hidden dimension) ol = (ZWP)|L I +Able
ahu 1 model topology

e 7 = Lipschitz constant
* w = maximum element of weight matrices

Limitations of rewiring methods

* Existing rewiring methods only focus on rewiring that changes the
graph topology to address oversquashing.

* The rewiring methods can inadvertently introduce inaccuracies within
domain-specific contexts.

Rewiring (@) - Community A Community B
O o ma— a0 o

., 0
. 3
..........

............

Corpmun_i.ty C
e Rewiring

<Potential pitfalls of rewiring in domain-specific graphs>

Motivations '_

* Di Giovanni et al. (2023) provide a theoretical justification that
increasing the width of the model (i.e., the hidden size) can also

iImprove its sensitivity. @Aé

Theorem (Sensitivity bound): Foranyu,v € V

o h(f’) :

1(}0) < (zwp)|L I+ Atfj Q%
dh

u Iiq model topology

<Bottleneck nodes [Yu et al, 2007]>

* We aim to design a new message passing paradigm that mitigates
oversquashing by selectively expanding the widths of bottleneck
nodes.

Proposed method

* We can define bottleneck nodes as high centrality nodes in terms of

betweenness centrality and so on [Yu et al., 2007, Topping et al.,
2022].

* Increasing the hidden widths of the bottleneck nodes enables
capturing more information.

/ \ / f \ / / \ /‘i / \ /‘, / \ ‘ﬂ
\/”\1/”\ AVANZENERWAN W\, AV 2N ERWaNZaN|

(a) Expanded nodes (b) Low-to-low (c) High-to-high (d) Low-to-high (e) High-to-low

Figure 3. Examples of PANDA’s message passing mechanism. The size of the node indicates the size of hidden dimension.

Proposed method — contd.

* Our PANDA message passing works in the following way.
* First, we selectively expand widths according to centrality measures.

* Then, our PANDA message passing enables signal propagation among nodes
with different widths (low and high-width nodes).

~

0%

\ 4

Graph G
3
b) (6

@\
-6

f(): Alinear transformation that
expands the width of low-dim nodes.

g(-): Adimension selector that selects
dimensions to be propagated from
high-dim nodes to low-dim nodes.

Experimentaul Results

Table 1. Results of PANDA and baselines for GCN and GIN. We show the best three in red (first), blue (second), and purple (third).

Method REDDIT-BINARY IMDB-BINARY MUTAG ENZYMES PROTEINS COLLAB

GCN (None) 68.255 £ 1.098 49.770 £ 0817 72.150 & 2442 27.667 + 1.164 70.982 + 0.737 33.784 +£ 0.488
+ Last Layer FA 68.485 + 0945 48.980 + 0945 70.050 4+ 2.027 26.467 + 1204 71.018 + 0963 33.320 =+ 0.435
+ Every Layer FA 48.490 £ 1.044 48.170 £ 0.801 70.450 £ 1.960 18.333 & 1.038 60.036 £ 0.925 51.798 + 0.419
+ DIGL 49980 + 0680 49.910 + 0841 71.350 &+ 2391 27.517 4+ 1.053 70.607 £ 0.731 15.530 £ 0.294
+ SDRF 68.620 & 0851 49.400 £ 0904 71.050 £ 1.872 28.367 £ 1.174 70.920 £ 0.792 33.448 £ 0.472
+ FoSR 70.330 = 0727 49.660 £ 0864 80.000 £ 1.574 25.067 £ 0994 73.420 £ 0.811 33.836 =+ 0.584
+ BORF Time-out 50.100 £ o900 75.800 £ 1.900 24.700 % 1.000 71.000 =+ 0.800 Time-out

+ GTR 68.990 & 0610 49.920 £+ 0990 79.100 &+ 1.860 27.520 £ 0.990 72.590 + 2.480 33.050 = 0.400
+ CT-Layer 51.580 & 1.019 50.320 &+ 0944 75.899 4 3.024 17.383 £ 1.030 60.357 &+ 1.060 52.146 =+ 0.415
+ PANDA 80.690 + 0.721 63.760 £+ 1.012 85.750 £ 1.396 31.550 & 1230 76.000 £ 0.774 68.400 =+ 0.452
GIN (None) 86.785 £ 1.056 70.180 £ 0992 77.700 £ 0.360 33.800 £ 0.115 70.804 + 0.827 72.992 + 0.384
+ Last Layer FA 90.220 £ 0475 70.910 £ 0.788 83.450 + 1.742 47.400 + 1.387 72.304 + 0.666 75.056 =+ 0.406
+ Every Layer FA 50.360 + 0.684 49.160 £ 0870 72.550 £ 3.016 28.383 £ 1.052 70.375 £ 0910 32.984 + 0.390
+ DIGL 76.035 0774 64.390 £ 0907 79.700 £ 2.150 35.717 £ 1.198 70.759 £ 0.774 54.504 £ 0.410
+ SDRF 86.440 0590 69.720 £ 1.152 78.400 + 2.803 35.817 4+ 1.094 69.813 £ 0.792 72.958 + 0.419
+ FoSR 87.350 £ 0598 71.210 + 0919 78.400 + 2.803 29.200 + 1367 75.107 £+ 0817 73.278 + 0416
+ BORF Time-out 71.300 £+ 1.500 80.800 % 2.500 35.500 %+ 1.200 74.200 + 0.800 Time-out

+ GTR 86.980 £ 0660 71.280 4+ 0860 77.600 £ 2.840 30.570 £+ 1420 73.130 £ 0.690 72.930 £ 0.420
+ CT-Layer 54.589 + 1757 50.000 £ 0974 56.850 * 4.253 16.583 + 0.907 61.107 £ 1.184 52.304 = 0.605
+ PANDA 91.055 £ 0402 72.560 £ 0917 88.750 £ 1.570 46.200 £ 1.410 75.759 £ 0.856 75.200 =+ 0.481

Experimentaul Results — contd.

Method

REDDIT-BINARY

IMDB-BINARY

MUTAG

ENZYMES

PROTEINS COLLAB

R-GCN

49.850 =+ 0.653
PANDA-GCN 80.690 =+ 0.721

50.012 4 0.917

69.250 +2.085 28.600 & 1.186 69.518 + 0.725 33.602 =+ 1.047
63.760 + 1.012 85.750 + 1.396 31.550 + 1.230 76.000 + 0.774 68.400 + 0.452

<PANDA-GCN vs. R-GCN>

C(G)

REDDIT-BINARY

IMDB-BINARY

MUTAG

ENZYMES

PROTEINS COLLAB

Degree
Betweenness
Closeness
PageRank
Load

80.690 + 0.721
80.000 = 0.659
79.700 + 0.664
80.340 =+ 0.826
79.500 £ 0.732

62.100 £+ 1.043
59.630 + 1.152
61.160 =+ 0.992
63.760 £ 1.012
59.840 + 1.153

85.200 + 1.568
85.750 £ 1.396
84.700 + 1.554
85.450 £ 1.569
85.700 £+ 1.549

31.117 £ 1.258
29.600 + 1.208
29.967 + 1.231
31.550 & 1.230
28.167 &+ 1.090

75.375 + 0.800
74.589 + 0.791
76.000 + 0.774
74.098 + 0.851
74.188 £ 0.814

68.162 + 0471
67.844 + 0.547
68.400 £ 0.452
67.540 =+ 0.500
67.802 + 0.506

<Performance comparison by various centrality measures for PANDA-GCN>

20 M32¥ 644 1289 PANDA | _ 1.4
4 m
S 812
Z15 =1
g Z
> S 1.0
21.0 — . 2
2 TT¥-y_y| £08
05w &

bd g --m---m| .

0055 3 2 5 6 7
Layer
(a) Sensitivity w.r.t. p (b) Sensitivity w.r.t. methods

Empirical sensitivity across layers for GCN on MUTAG.

Compared to other methods, PANDA shows higher
sensitivity that is maintained even in deeper layer.

== GCN == GIN
S 0.8 E 0.8 == + FoSR
-g 4@\ == + GTR
S 0.6 o 0.6 == __+ PANDA
o Q
(o] o
j - |
& 04 & 04
© (]
))
n 0.2 n 0.2
0 0 -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Normalized Ry¢ Normalized Ryt

(a) GCN on REDDIT-BINARY (b) GIN on REDDIT-BINARY

The amount of signal propagated across the graph
w.r.t. the normalized total effective resistance.
PANDA maintains continuous information flows even
under high bottleneck conditions.

Neural Controlled Differential Equations

<Introduction>

Continuous-time recurrent neural networks

* NCDEs can be understood as continuous-time RNNs [Kidger et al., 2020].
* NCDEs continuously model the hidden state z of RNNs.
* The hidden state changes over time in response to X.

Hidden state z

3 t dX
2t = zty + | fo(zs)dXs = 24, + fg(zs)g(s)ds
to to

0

Generalized selective state-space models

* Deep SSMs are one of the candidates for the post-Transformer architecture.
* For the past couple of years, there have been notable contributions.
* For some tasks, they outperform Transformers.

e CDEs (in conjunction with the rough path theory) provide theoretical foundations
for deep SSMs [Ciron et al., 2024].
* Many SSM variants are special cases of CDEs.
* Their uniform closure can be characterized by the rough path theory.

 The CDE-based generalization learns path-to-path operators in a balanced
manner since it does not solely rely on the last neural network layer for non-
linear computation.

Combining the temporal and spatial
processing for traffic forecasting

<Choi et al., Graph Neural Controlled Differential Equations for Traffic Forecasting,
AAAI, 2022>

Motivations

 Traffic forecasting has a high impact on our daily lives.
* Many traffic sensors are deployed but often malfunctioning.
* Irregular spatiotemporal observations are ubiquitous.

* We need a novel framework to process them and forecast future traffic
conditions, e.g., traffic volume, speed, etc.

\\\ -' L |
8) \”' -,
R ___.ﬂ-—.‘wg\ ‘ *2“ A fi { \‘I_g.t <
g3 aada
«-‘ MountaigView . | '.\ von -.,_..\..‘ T\ 4.‘ \ F|IID'[rlagE'
\\ nnyvalem s = ’ \ i85 s ¢ h‘ Burban.il-; f]
2 H“‘k-anc. S
‘. ’él\. + "'"' @asadena :
Clapertin®g_ gt o Bl Hillwiew 1405 'f'E‘FId
\ 17 Ajrport l'J
.\\.‘ Campbell W i\ SEII‘I Gabr
Sﬂ""“qaq‘*‘_‘_ __1. BE“JEFI'},I’ Hills gﬁ_‘j_’/—“‘“

/ Us 101
Los Gatos Al I Los Ahg. es”) Fm

Proposed method

* We resort to the neural CDE technology for its Hldden
robustness to irregularity. | |
* Each vertex means a traffic sensor.

* There is a graph of traffic sensors.

Time " . " g
to ty ty in

Figure 1: The overall workflow in our proposed STG-NCDE

Proposed method

* H(T) means the set of hidden states of nodes. Hldden

* We process each node separately.

dX(t)

H(T) = H(0) +] F(H(t); 6)

Time " . " g
to ty ty in

Figure 1: The overall workflow in our proposed STG-NCDE

Proposed method

* Given an adjacency matrix, we merge the Hldden
hidden state derivatives of nodes, by using GCN | ’
[Kipf & Welling, 2017].

This is a GCN.

Time . . . -—>
tﬂ tl tg fp,r

Figure 1: The overall workflow in our proposed STG-NCDE

Proposed method

 Two ODEs can be merged into a single ODE.

Hidden 22 am
I A ML
T i .
dX(t : NCDE Spatial Processing gno :
2(1) = 2(0)+ [o(Zx0,)r(H o) P, =
‘ "

<Merge them>

T
Z(T) = Z(0) + fn 0(2(t):0,) D

H(T) H(0) +] rE)00 S

Time . " " >

to ty ta ity

Figure 1: The overall workflow in our proposed STG-NCDE

Dataset 'V| Time Steps Time Range Type
PeMSD3 358 26,208 (09/2018 - 11/2018 Volume
PeMSD4 307 16,992 01/2018 - 02/2018 Volume
PeMSD7 883 28,224 05/2017 - 08/2017 Volume
PeMSD8 170 17,856 07/2016 - 08/2016 Volume

PeMSD7(M) 228 12,672 05/2012 - 06/2012 Velocity
PeMSD7(L) 1,026 12,672 05/2012 - 06/2012 Velocity

Table 1: The summary of the datasets used in our work. We
predict either traffic volume (i.e., # of vehicles) or velocity.

1200 —— 5TG-NCDE
AGCRN

| —— Z-GCMNETs =

1101 —*

STGODE AT v

1 2 3 4 5 & 7 B 9 10 11 12
Horizon

(d) MAPE on PeMSD8

B
=
e

L
=]
e

— Truth
100! —— STG-MCDE
— Z-GCNETs

Traffic Flow
PJ
=
=

06:00 12:00 18:00 24:00 06:00
Time

(b) Node 261 in PeMSD4

Model

MAE RMSE MAPE

STGCN
DCRNN
GraphWaveNet
ASTGCN(r)
STSGCN
AGCRN
STFGNN
STGODE
Z-GCNETs

14.88 (117.0%) 24.22 (113.6%) 12.30 (121.8%)
14.90 (117.1%) 24.04 (112.7%) 12.75 (126.1%)
15.94 (125.3%) 26.22 (122.9%) 12.96 (128.2%)
14.86 (116.9%) 23.95 (112.3%) 12.25 (121.3%)
14.45 (113.5%) 23.58 (110.5%) 11.42 (113.0%)
13.32 (104.7%) 22.29 (104.5%) 10.37 (102.7%)
13.92 (109.5%) 22.57 (105.8%) 11.30 (111.9%)
13.56 (106.6%) 22.37 (104.8%) 10.77 (106.6%)
13.22 (104.0%) 21.92 (102.7%) 10.44 (103.4%)

STG-NCDE

12.72 (100.0%) 21.33 (100.0%) 10.10 (100.0%)

Table 2: The average error of some selected highly perform-
ing models across all the six datasets. Inside the parentheses,
we show their performance relative to our method.

Table 6: Forecasting error on irregular PeMSDS8. More re-
sults in other datasets are in Appendix.

Model Missing rate MAE RMSE MAPE
STG-NCDE 15.68 2496 10.05%
Only Temporal 10% 21.18 33.02 13.26%
Only Spatial 16.85 26.63 11.12%
STG-NCDE 16.21 25.64 10.43%
Only Temporal 30% 21.46 3337 13.57%
Only Spatial 18.46 29.03 12.16%
STG-NCDE 16.68 26.17 10.67%
Only Temporal 50% 22.68 35.14 14.11%
Only Spatial 1798 28.12 11.87%

I -
Q4

4 O

-

What are paftial differential equations?

. = > d > d? - -
* The second law of motion F = ma = — (mv) = e (mu), whereu = (x,y,z,t)

is a coordinate of an object at time t can be extended to other fields, e.g., fluid
dynamics where p replaces m.

* The Black-Scholes equation is a Nobel Prize-awarded model for the dynamics of
the European option market.

« The spatiotemporal coordinate (x, y, z, t) can be replaced with the coordinate (s, t),
where s is the underlying asset price.

 Likewise, PDEs are the essential language describing the natural/social/financial
dynamics.

Physics-informed Neural Networks

<Introduction>

An example of PINNs

* Suppose a regression task to predict the position of a falling ball given time t.

(x, ?) pairs
Training 4

UEUROr

Position of ball, x

L

Data

* There is one known governing equation that @i should follow:

U, — g = 0, where g = 9.80665m/s>.
* We can use the following loss with no training data: Query about time t?
(i (0; @) — 0) + (tf.grad(tf.grad(ti(t; 0), 1), t) — 9.80665).

Training PINNs

* PINNs parameterize both the solution u and the governing equation f.
* #i(x,t; 0): neural network approximation of the solution u(x, t)
. f(x, t; 0): neural network approximation of the governing equation f

* The neural network f shares the same network weights with ii.
* In the case of the inviscid Burgers’ equation, for instance,
f(x,t,1;0) =tf.grad(ii(x, t; 0), t) + ii(x, t; 0) tf.grad(ii(x, t; 6), x).

* PINNs train 8 with the following loss:
o [& WuLu + Wfo

N o o
L=y e th) (el thi)

t(x,t;0)

Ne . 2
=52, |G w0)

Stabilizing the PINN training

<Kim et al., DPM: A Novel Training Method for Physics-Informed Neural Networks
in Extrapolation, AAAI, 2021>

I\/Iotivations{'

* L, converges fast.

. Lf fluctuates and does not decrease below a certain value.

* Recall that governing equations include frequently highly non-linear operators.

* Learning governing equations correctly is a key of PINNs, but what we observed
shows its difficulty.

0.075 -
10 A
5 - 0.050 -
3 . 3
5 -
0.025 n\hk"
04 s 0.000 -
| 1 1 I I I
0 5000 10000 0 5000 10000
epochs epochs

(a) L. curve (b) Ly curve

Proposed method

* We dynamically modify the gradient to ensure a decrease of L¢ if L > €.

* The gradient g(¥) at iteration k is defined as follows:

(K
giu) if Ly < ¢
T T T T T T T T T A T TN T T T |
g(k) = <|g£k) if Lg > e/\g(k) g(';) = 0. -
et Sy A
\ v* + gik) otherwise
* The optimal gradient manipulation is analytically solved as follows: (c) Updating ®)
g(k) (k)
" L 91y O
vo= GIY
lg; 15

f

Solving Parameterized PDEs
with Meta Learning

<Cho et al., Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed
Neural Networks, NeurlPS, 2023>

Motivations

e We need to solve many similar problems in real-world applications.
up + Puy — Vg, —pu(l —u) =0, ze€, te|0,T]

* |In the above convection-diffusion-reaction equation, some parameter settings
are trivial to solve with PINNs whereas others are not.

* We need an adaptive-rank framework to solve parameterized PDEs.

* Use simple (resp. complicated) DNNs for easy (resp. difficult) cases.

ATt =LR-FC'(R') < R =U/(ZL(VTRY)) + b

Proposed Methoad

h!
hl—l—l

ue ((z,t); p)

o(W°h" +b°),
(U (S () (VIThY) +8), 1= 1,..., L,
o(WETTRE T 4+ b5, where St (i) = diag(s!(u)).

h
p— P ()
PDE parameters
Parameterized PDEs diag(.;l(p)) d_ia,g(.sl(p)) diag(.;L (w))

Coordinates E Ut D) Ut ¥ () vt zzb(ﬂ) E'

L) hl h2 hl | hl+l hL ‘ hL+l o

(z,t)~> 'E_. — —_— e — —_—— — E — ug((z,t); p)
t%-_- UiVt yl U'ni(pvi™ yi Ulnl(uyvIi™ vyl %
@ g
LR-FC! LR-FC' LR-FCL

Figure 1: The architecture of Hyper-LR-PINN consisting of i) the hypernetwork generating model
parameters (i.e., diagonal elements) of LR-PINN and ii) LR-PINN approximating solutions.

Adaptive rank

N
O

K
W
B
H
o

c 32
© 30

)

(98]
1Y,
o)
(w)]

Adaptive rank
t

27 , | | , <20
30 32 34 36 38 40 1 4 7 10 13 16 19 B LN B R
B B s2(p)
(a) B € [30,40] (b) 5 € [1,20] (c) B € [1,20]

Figure 4: Adaptive rank on convection equation (the left and the middle panels). The magnitude of
the learned diagonal elements s? of the second hidden layer for varying /3 € [1, 20] (the right panel).

Visualization of solutions

1.0 1.00
0.75
0.5 0.50
0.25

0.00

—0.25

—0.50

‘ -=0.75
-19 6 —o5 00
p 4

(a) PINN (Abs.err.=0.7403)

=

1.0 1.00
0.75
0.5 0.50
0.25
0.0 0.00
-0.25
—-0.5 —-0.50
-0.75
%0 -05 00 o5 109
X

(b) Ours (Abs.err.=0.0285)

-

1.0

0.5

0.0

—1.(

0 =05 0.0 0.5 1.0
X

(c) Exact solution

Figure 7: [2D-Helmholtz equation] Solution snapshots for a = 2.5

1.00

0.75

0.50

0.25

0.00

-0.25

—0.50

-0.75

=1.00

Conclusion

* Deep learning based on differential equations provide us novel ways
to design and analyze neural networks.

* GCNs can be enhanced by adopting more complicated hidden dynamics
inspired by physical phenomena.

 NCDEs are generalized forms of various recurrent models and can be
extended to the spatiotemporal processing.

* The current Transformer paradigm, which scales well up to very large models,
costs a lot. We need an alternative paradigm.

* Deep learning can also be used for solving PDEs.

 However, we do not know governing equations in many cases.

	Physics-inspired Deep Learning�KTAI 콜로퀴움�2024년 10월 28일
	Contents
	Science for Deep Learning
	What are differential equations?
	What are differential equations? – contd.
	Deep learning based on diff. eqs.
	Deep learning based on diff. eqs. – contd.
	Deep learning based on diff. eqs. – contd.
	Deep learning based on diff. eqs. – contd.
	Deep learning based on diff. eqs. – contd.
	Nanos gigantum humeris insidentes
	Neural Ordinary Differential Equations�<Introduction>
	Plain vs. residual connections
	Why are ResNets successful?
	Why are ResNets successful? – contd.
	Why are ResNets successful? – contd.
	An example of ODEs
	Euler method vs. residual connection
	Runge–Kutta (RK) method
	Dormand–Prince (DOPRI) method
	Continuous ResNet
	NODE-based image classifier
	How to train
	Adjoint sensitivity method
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	Graph Convolutional Networks�<Introduction>
	Multiplication by the Laplacian
	슬라이드 번호 30
	Graph convolutional networks [Kipf & Welling, 2017]
	Oversmoothing problem
	슬라이드 번호 33
	Overcoming the oversmoothing problem�<Choi et al., GREAD: Graph Neural Reaction-Diffusion Networks, ICML, 2023>
	슬라이드 번호 35
	슬라이드 번호 36
	슬라이드 번호 37
	슬라이드 번호 38
	슬라이드 번호 39
	슬라이드 번호 40
	슬라이드 번호 41
	슬라이드 번호 42
	슬라이드 번호 43
	슬라이드 번호 44
	Overcoming the oversquashing problem�<Choi et al., PANDA: Expanded Width-Aware Message Passing Beyond Rewiring, ICML 2024>
	슬라이드 번호 46
	슬라이드 번호 47
	슬라이드 번호 48
	슬라이드 번호 49
	슬라이드 번호 50
	슬라이드 번호 51
	슬라이드 번호 52
	슬라이드 번호 53
	슬라이드 번호 54
	슬라이드 번호 55
	슬라이드 번호 56
	Neural Controlled Differential Equations�<Introduction>
	슬라이드 번호 58
	슬라이드 번호 59
	Combining the temporal and spatial processing for traffic forecasting�<Choi et al., Graph Neural Controlled Differential Equations for Traffic Forecasting, AAAI, 2022>
	슬라이드 번호 61
	슬라이드 번호 62
	슬라이드 번호 63
	슬라이드 번호 64
	슬라이드 번호 65
	슬라이드 번호 66
	Deep Learning for Science
	What are partial differential equations?
	Physics-informed Neural Networks�<Introduction>
	슬라이드 번호 70
	슬라이드 번호 71
	Stabilizing the PINN training�<Kim et al., DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation, AAAI, 2021>
	슬라이드 번호 73
	슬라이드 번호 74
	Solving Parameterized PDEs�with Meta Learning�<Cho et al., Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural Networks, NeurIPS, 2023>
	슬라이드 번호 76
	슬라이드 번호 77
	슬라이드 번호 78
	슬라이드 번호 79
	슬라이드 번호 80

