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LLMs and Software Engineering
History, Landscape, and Outlook

“GPT-3 was introduced in 2020 - surely it is 
too early to speak of history…?”



📖 
History



Let’s go back to 2012
Hindle et al., ICSE 2012

• One of my favourite papers: On Naturalness of Software (https://dl.acm.org/
doi/10.5555/2337223.2337322)


• “Programming languages, in theory, are complex, flexible and powerful, but 
the programs that real people actually write are mostly simple and rather 
repetitive, and thus they have usefully predictable statistical properties that 
can be captured in statistical language models and leveraged for software 
engineering tasks.”


• But what is “naturalness”?

https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322


What is “natural” about language?

• Natural language refers to ordinary languages 
that occur naturally in human community “by 
process of use, repetition, and change without 
conscious planning of premeditation” 
(Wikipedia)


• From the statistical point of view, it means 
that most of our utterances are simple, 
repetitive, and therefore predictable.


• Surely this is how we all learn language.

https://en.wikipedia.org/wiki/Natural_language


John: Hi, nice to meet you. How are  you?

Mary: I’m ____, _____ ___. ___ ___?

a) fine, thank you. And you?


b) okay, I guess. But why?



What about code?

• It is not “natural”, in the sense that we have artificially created the grammar 
for programming languages.


• Programming languages do evolve, but how?


• Intentionally? New grammars, language consortiums, etc…


• Gradually? Languages do affect each other, a newer and more popular 
style eventually gets accepted, etc…



Python: for _ __ _____ … Java: for _ ___ _ _ _ _ …

a) i in range


b) ( int i = 0;

a) i in range


b) ( int i = 0;



Statistical Language Model

• Given a set of tokens, , a set of possible utterances, , and a set of actual 
utterances, , a language model is a probability distribution  over utterances 

, i.e., 


• An utterance (or a sentence) is a sequence of tokens (or words). Suppose we have  
tokens,  that consist . What is ?


• 


• But these conditional probabilities are hard to calculate: the only feasible approach 
would be count each utterance that qualifies, but  is too big, let alone .

𝒯 𝒯*
𝒮 ⊂ 𝒯* p

s ∈ 𝒮 ∀s ∈ 𝒮[0 < p(s) < 1 ∧ ∑
s∈𝒮

p(s) = 1

N
a1, a2, …, aN s p(s)

p(s) = p(a1)p(a2 |a1)p(a3 |a1 . a2)p(a4 |a1, a2, a3)…p(aN |a1…aN−1)

𝒮 𝒯*



N-Grams

• Assumes Markov property, i.e., the next token is influenced only by those 
came immediately before (say, within the window of  tokens)!


• 


• This is now much more tractable:


• 


• Given some context, we can now compute the probability of the candidate 
token that comes next. In other words, we can predict the next token!

n

p(ai |a1…ai−1) ≃ p(ai |ai−3ai−2ai−1)

p(ai |ai−3ai−2ai−1) =
count(ai−3, ai−2, ai−1, ai)
count(ai−3, ai−2, ai−1, * )



Large Language Model
(really, a very large statistical language model)

• Mainly Transformer-based DNNs that are trained to be an auto-regressive 
language model, i.e., given a sequence of tokens, it repeatedly tries to predict 
the next token.


• The biggest hype in SE research right now with an explosive growth, 
because:


• They seem to get the semantics of the code and work across natural and 
programming language


• Emergent behavior leading to very attractive properties such as in-context 
learning, Chain-of-Thoughts, or PAL



🧭 
Landscape



Survey of the Explosion 💥
ICSE 2023 Future of SE Track (https://arxiv.org/abs/2310.03533)

https://arxiv.org/abs/2310.03533
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Fig. 1. A mapping between software development activities, research domains, and the paper structure

Fig. 2. Trends in number of arXiv preprints. The blue line denotes the number
of preprints categorised under “CS”. The orange line denotes the number of
preprints in AI (cs.AI), Machine Learning (cs.LG), Neural and Evolutionary
Computing (cs.NE), Software Engineering (cs.SE), and Programming Lan-
guage (cs.PL) whose title or abstract contains either “Large Language Model”,
“LLM”, or “GPT”. The green line denotes the number of preprints in SE and
PL categories whose title or abstract contains either “Large Language Model”,
“LLM”, or “GPT”

Fig. 3. Proportions of LLM papers and SE papers about LLMs. By “about
LLMs”, we mean that either the title or the abstract of a preprint contains
“LLM”, “Large Language Model”, or “GPT”. The blue line denotes the
percentage of the number of preprints about LLMs out of the number of
all preprints in the CS category. The orange line denotes the percentage of
the number of preprints about LLMs in cs.SE and cs.PL categories out of all
preprints about LLMs

Figure 2, shows the growth in the number of arXiv-
published papers on Computer Science (|A|, in Blue), and on
LLMs (|L|, in orange). Those papers specifically on Software
Engineering and LLMs are depicted in Green (|L \ S|).
Given the rapid rise in overall publication volumes, we use
a logarithmic scale for the vertical axis. Unsurprisingly, we
see an overall rise in the number of CS publications.

Also, given the recent upsurge in attention for LLMs, the
exponential rise in the number of papers on LLMs is relatively
unsurprising.

Perhaps more interesting is the rapid uptake of Software
Engineering applications of LLMs, as revealed by the growth
trend, pictured in green on this figure. In order to examine
this trend in more detail, we plot the proportion of LLM pub-
lications (L) to all CS publications (A) in blue, as well as the
proportions of LLM-based software engineering publications
(L \ S) to all LLM publications in orange in Figure 3. As
can be seen, the proportion of LLM papers on LLM-based
Software Engineering has been rising dramatically since 2019.
Already, more than 10% of all papers on LLMs are concerned
with LLM-based Software Engineering.

As a result of this growth, we can expect many other surveys
of LLM-Based SE. The rapid expansion of the literature makes
it unlikely that further comprehensive SE-wide studies will fit
the space constraints of a single paper, but we can expect many
specific comprehensive surveys of sub-areas of interest, and
also Systematic Literature Reviews (SLRs) that tackle SE-wide
crosscutting issues by asking specific research questions of
the primary literature in the systematic review. Already, such
SLRs are appearing. For example, Hou et al. [15] provided
an excellent recent SLR covering 229 research papers from
2017 to 2023 reporting SE tasks tackled, data collection and
preprocessing techniques, and strategies for optimising LLM
performance (such as prompt engineering).

The remainder of this paper is organised to follow the top-
level software development activities and research domains as
depicted in Figure 1.

II. PRELIMINARIES

A. Large Language Models

A Large Language Model (LLM) refers to an Artificial
Intelligence (AI) model that has been trained on large amounts
of data and is able to generate text in a human-like fashion.
Table III provides a glossary of LLM terminology to make the
paper self-contained.
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Figure 2, shows the growth in the number of arXiv-
published papers on Computer Science (|A|, in Blue), and on
LLMs (|L|, in orange). Those papers specifically on Software
Engineering and LLMs are depicted in Green (|L \ S|).
Given the rapid rise in overall publication volumes, we use
a logarithmic scale for the vertical axis. Unsurprisingly, we
see an overall rise in the number of CS publications.

Also, given the recent upsurge in attention for LLMs, the
exponential rise in the number of papers on LLMs is relatively
unsurprising.

Perhaps more interesting is the rapid uptake of Software
Engineering applications of LLMs, as revealed by the growth
trend, pictured in green on this figure. In order to examine
this trend in more detail, we plot the proportion of LLM pub-
lications (L) to all CS publications (A) in blue, as well as the
proportions of LLM-based software engineering publications
(L \ S) to all LLM publications in orange in Figure 3. As
can be seen, the proportion of LLM papers on LLM-based
Software Engineering has been rising dramatically since 2019.
Already, more than 10% of all papers on LLMs are concerned
with LLM-based Software Engineering.

As a result of this growth, we can expect many other surveys
of LLM-Based SE. The rapid expansion of the literature makes
it unlikely that further comprehensive SE-wide studies will fit
the space constraints of a single paper, but we can expect many
specific comprehensive surveys of sub-areas of interest, and
also Systematic Literature Reviews (SLRs) that tackle SE-wide
crosscutting issues by asking specific research questions of
the primary literature in the systematic review. Already, such
SLRs are appearing. For example, Hou et al. [15] provided
an excellent recent SLR covering 229 research papers from
2017 to 2023 reporting SE tasks tackled, data collection and
preprocessing techniques, and strategies for optimising LLM
performance (such as prompt engineering).

The remainder of this paper is organised to follow the top-
level software development activities and research domains as
depicted in Figure 1.

II. PRELIMINARIES

A. Large Language Models

A Large Language Model (LLM) refers to an Artificial
Intelligence (AI) model that has been trained on large amounts
of data and is able to generate text in a human-like fashion.
Table III provides a glossary of LLM terminology to make the
paper self-contained.
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Does it engage with semantic across NL and PL?
An example: bug reproduction

• A classic challenge in automated testing: finding an input that executes 
specific branch in the code is easy, deciding whether that execution was 
buggy or not is not easy (=oracle problem).


• Bug reproduction is the task of reproducing a buggy execution based on bug 
report written in natural language.


• Traditionally, the only “buggy behaviour” that can be automatically 
confirmed has been crashes.



LLMs can make that connection.
LLM-based Bug Reproduction (Kang, Yoon & Yoo, ICSE 2023)
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Answer to RQ2-3: LIBRO can reduce both the number of
bugs and tests that must be inspected: 33% of the bugs
are safely discarded while preserving 87% of the successful
bug reproduction. Among selected bug sets, 80% of all bug
reproductions can be found within 5 inspections.

C. RQ3. How well would LIBRO work in practice?

TABLE VII: Bug Reproduction in GHRB: x/y means x
reproduced out of y bugs

Project rep/total Project rep/total Project rep/total

AssertJ 3/5 Jackson 0/2 Gson 4/7
checkstyle 0/13 Jsoup 2/2 sslcontext 1/2

1) RQ3-1: We explore the performance of LIBRO when
operating on the GHRB dataset of recent bug reports. We find
that of the 31 bug reports we study, LIBRO can automatically
generate bug reproducing tests for 10 bugs based on 50 trials,
for a success rate of 32.2%. This success rate is similar to
the results from Defects4J presented in RQ1-1, suggesting
LIBRO generalizes to new bug reports. A breakdown of results
by project is provided in Table VII. Bugs are successfully
reproduced in AssertJ, Jsoup, Gson, and sslcontext, while they
were not reproduced in the other two. We could not reproduce
bugs from the Checkstyle project, despite it having a large
number of bugs; upon inspection, we find that this is because
the project’s tests rely heavily on external files, which LIBRO
has no access to, as shown in Section VI-C3. LIBRO also
does not generate BRTs for the Jackson project, but the small
number of bugs in the Jackson project make it difficult to draw
conclusions from it.
Answer to RQ3-1: LIBRO is capable of generating bug
reproducing tests even for recent data, suggesting it is not
simply remembering what it trained with.

2) RQ3-2: LIBRO uses several predictive factors correlated
with successful bug reproduction for selecting bugs and rank-
ing tests. In this research question, we check whether the
identified patterns based on the Defects4J dataset continue to
hold in the recent GHRB dataset.

Fig. 5: Distribution of the max_output_clus_size values for
reproduced and not-reproduced bugs

Recall that we use the maximum output cluster size as a
measure of agreement among the FIBs, and thus as a selection
criterion to identify whether a bug has been reproduced. To
observe whether the criterion is a reliable indicator to predict

Listing 4: Generated FIB test for AssertJ-Core-2666.
1 public void testIssue952() {

2 Locale locale = new Locale("tr", "TR");

3 Locale.setDefault(locale);

4 assertThat("I").as("Checking�in�tr_TR�locale").containsIgnoringCase("i

");

5 }

the success of bug reproduction, we observe the trend of
max_output_clus_size between the two datasets, with and
without BRTs. In Figure 5, we see that the bugs with no BRT
typically have small max_output_clus_size, mostly under
ten; this pattern is consistent in both datasets.

The ranking results of GHRB are also presented in Table VI.
They are consistent to the results from Defects4J, indicating
the features used for our ranking strategy continue to be good
indicators of successful bug reproduction.

Answer to RQ3-2: We find that the factors used for the
ranking and selection of LIBRO consistently predict bug
reproduction in real-world data.

3) RQ3-3: We present case studies of attempts by LIBRO
to reproduce bugs that either succeeded or failed.

TABLE VIII: Bug Report Successfully Reproduced: URLs
are omitted for brevity (AssertJ-Core Issue #2666)

Title assertContainsIgnoringCase fails to compare i and I in
tr_TR locale

See org.assertj.core.internal.Strings#assertContainsIgnoringCase
[url]
I would suggest adding [url] verification to just ban
toLowerCase(), toUpperCase() and other unsafe methods: #2664

We first present a successfully reproduced bug report, issue
#2685 for the AssertJ-Core project, in Table VIII. The bug
is that, in tr_TR locale, assertContainsIgnoringCase method is
mishandling the letter I. For this bug report, LIBRO gener-
ates the bug reproducing test in Listing 4. Despite the bug
report not containing any executable code, LIBRO successfully
generated a bug reproducing test that compares I and i,
using the containsIgnoringCase method referenced within the
report. A BRT for this bug is ranked at the second place,
suggesting a developer would have been quickly provided with
a reproducing test.

Listing 5: Generated FIB test for Checkstyle-11365.
1 public void testFinalClass() throws Exception {

2 final DefaultConfiguration checkConfig =

3 createModuleConfig(FinalClassCheck.class);

4 final String[] expected = CommonUtil.EMPTY_STRING_ARRAY;

5 verify(checkConfig, getPath("InputFinalClassAnonymousClass.java"),

expected);

6 }

We now turn to a bug report that is not successfully
reproduced. Table IX contains issue #11365 in the Checkstyle
project. The bug is that CheckStyle incorrectly decides that a
class should be declared final, and mistakenly raises an error.

public void testIssue952(){ 
  Locale locale = new Locale("tr", "TR"); 
  Locale.setDefault(locale); 
  assertThat("I").as("Checking in tr_TR locale") 
  .containsIgnoringCase("i"); 
} 



• Above certain size, LLMs change 
their behavior in interesting ways


• The point of change in slope is 
referred to as “breaks”

What is an Emergent Behavior?

Caballero et al., https://arxiv.org/abs/2210.14891

https://arxiv.org/abs/2210.14891


In-context Learning

• Previously, getting a model for a specific task involved either dedicated model 
+ training, or at least general pre-trained model + fine-tuning


• Above certain size, LLMs show the ability to perform in-context learning, i.e., 
they learn as part of their context (i.e., preceding tokens), leading to prompt 
engineering:


• Few-shot learning: the context explains the problem, and gives a few 
examples of question-answer. LLMs can now answer an un-seen question.


• Zero-shot learning: the context explains the problem as well as how it can 
be solved. LLMs can now answer an un-seen problem.



Chain-of-Thoughts
Wei et al., https://arxiv.org/abs/2201.11903

• Underneath, LLMs are doing autocompletion, not any other type of reasoning: 
they appear to be capable of rational inference because the corpus they are 
trained include traces of logical reasoning.


• So, conditioning the model (with the context) to be more precise about the 
reasoning steps can result in generation of more accurate reasoning steps.


• Add “Let’s think in step by step” at the end of every prompt (https://
arxiv.org/abs/2205.11916) 🙃 🫥 🫠

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916


Chain-of-Thoughts
Wei et al., https://arxiv.org/abs/2201.11903

• Add “Let’s think in step by step” at the end of every prompt (https://arxiv.org/
abs/2205.11916) and the model performance go up! 🙃 🫥 🫠


• We have even weirder, recent results. 


• If you make a strong emotional plea, the performance improves (https://
arxiv.org/abs/2307.11760) 🥺


• Apparently, there is anecdotal evidence that a promise of a large tip 
produces mode detailed responses (https://twitter.com/voooooogel/status/
1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg) 💰

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://arxiv.org/abs/2307.11760
https://twitter.com/voooooogel/status/1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg
https://twitter.com/voooooogel/status/1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg
https://twitter.com/voooooogel/status/1730726744314069190?s=61&t=nZo2vLZm-4bSiRjGlkTRBg


Gao et al., ICML 2023 (https://arxiv.org/abs/2211.10435)

• What is even more logical and 
step by step than natural 
language? Programming 
language :)


• Providing few-shop examples 
that are mixtures of NL and LP 
can enhance the reasoning 
capabilities of LLM

Program-Aided Language Models (PAL)
PAL: Program-aided Language Models 2

A: The bakers started with 200 loaves 
loaves_baked = 200 
They sold 93 in the morning and 39 in the afternoon 
loaves_sold_morning = 93 
loaves_sold_afternoon = 39 
The grocery store returned 6 loaves. 
loaves_returned = 6 
The answer is 
answer = loaves_baked - loaves_sold_morning
  - loaves_sold_afternoon + loaves_returned 

>>> print(answer) 
74 

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? 

A: Roger started with 5 tennis balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11. 

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of
bread did they have left? 

Chain-of-Thought (Wei et al., 2022)
Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? 

A: Roger started with 5 tennis balls.  
tennis_balls = 5 
2 cans of 3 tennis balls each is 
bought_balls = 2 * 3 
tennis balls. The answer is  
answer = tennis_balls + bought_balls 

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of bread
did they have left? 

Program-aided Language models (this work)
Input

Model Output

A: The bakers started with 200 loaves. They sold 93 in
the morning and 39 in the afternoon. So they sold 93 +
39 = 132 loaves. The grocery store returned 6 loaves. So
they had 200 - 132 - 6 = 62 loaves left.  
The answer is 62. 

Model Output

Figure 1: A diagram illustrating PAL: Given a mathematical reasoning question, Chain-of-thought (left) generates interme-
diate reasoning steps of free-form text. In contrast, Program-aided Language models (PAL, right) generate intermediate
steps and Python code. This shifts the role of running the reasoning steps from the language model to the Python interpreter.
The final answer is obtained by running the generated reasoning chain. Chain-of-thought reasoning is highlighted in blue;
PAL steps are highlighted in gray and pink ; the Python interpreter run is highlighted in black and green.

require LLMs, solving and reasoning can be done with the
external solver. This bridges an important gap in chain-of-
thought-like methods, where reasoning chains can be correct
but produce an incorrect answer.

We demonstrate the effectiveness of PAL across 13 arith-
metic and symbolic reasoning tasks. In all these tasks,
PAL using Codex (Chen et al., 2021a) outperforms much
larger models such as PaLM-540B using chain-of-thought
prompting. For example, on the popular GSM8K bench-
mark, PAL achieves state-of-the-art accuracy, surpassing
PaLM-540B with chain-of-thought by absolute 15% top-
1 accuracy. When the questions contain large numbers, a
dataset we call GSM-HARD, PAL outperforms COT by an ab-
solute 40%. We believe that this seamless synergy between
a neural LLM and a symbolic interpreter is an essential step
towards general and robust AI reasoners.

2. Background: Few-shot Prompting
Few-shot prompting leverages the strength of large-language
models to solve a task with a set of k examples that are pro-
vided as part of the test-time input (Brown et al., 2020;
Liu et al., 2021; Chowdhery et al., 2022), where k is usu-
ally a number in the low single digits. These input-output
examples {(xi, yi)}ki=1 are concatenated in a prompt p
⌘ hx1 · y1i k hx2 · y2i k . . . k hxk · yki. where “·” denotes
the concatenation of an input and output, and “k” indicate
the concatenation of different examples. During inference,
a test instance xtest is appended to the prompt, and p kxtest

is passed to the model which attempts to complete p k xtest,
and thereby generate an answer ytest. Note that such few-
shot prompting does not modify the underlying LLM.

PAL: Program-aided Language Models, Gao et al., ICML 2023

https://arxiv.org/abs/2211.10435 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Zero-shot Automated Debugging
Kang et al., https://arxiv.org/abs/2304.02195
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Kang et al.

Construct
Prompt

Scientific 
Debugging 
Explanation

Debugging 
Problem 

Description

1 def f(n):
2     # Evaluate if n can be
3     # written as the sum of 4
4     # positive even numbers.
5     return n%2==0 and n>8

fails on the test
assert f(8) == True, f(8)

with the error message
...
AssertionError: False

Hypothesize
via LLM

Hypothesis: The input 8 is even. 
Perhaps the condition on line 5 is 
classifying the input as odd.
Prediction: n%2==0 will be false.
Experiment: `b debugging.py:5 ;; c 
;; p (n%2==0)`

The LLM makes a hypothesis 
about what the bug is, and an 
experiment to run.

Observe
via execution

Observation: True

The debugger verifies 
by performing the 
experiment.

Conclude
via LLM

Conclusion: The 
hypothesis is rejected.

The LLM judges the 
hypothesis (here, to 
be incorrect).

Hypothesis: [The prev. hypothesis] 
was REJECTED. Perhaps the 
condition… is classifying the 
input as less than or equal to 8.
Prediction: n>8 will be false.
Experiment: `b debugging.py:5 ;; c 
;; p (n>8)`

The prior hypothesis was 
rejected; the LLM suggests 
n>8 is problematic.

Observation: False

This time, the 
debugger confirms the 
prediction.

Conclusion: The 
hypothesis is supported.

The LLM deems the 
hypothesis correct.

1 2 3

4 5

Hypothesis: [The prev. hypothesis] 
was SUPPORTED. Perhaps it should 
be changed to n>=8.
Prediction: If the condition on 
line 5 is changed to n>=8, the 
test will pass.
Experiment: `REPLACE(5, "n>8", 
"n>=8") AND RUN`

6

The LLM generates a custom 
command to fix the code and 
execute the failing test.

Observation: 
[No exception triggered]

Due to the fix, the 
failing test passed.

Conclusion: The 
hypothesis is supported. 
<DEBUGGING DONE>

The LLM signals that 
debugging is done 
(<DEBUGGING DONE>).

7 8 9
Legend

Dashed boxes:
generated by LLM

Solid boxes: generated by 
debugger / test execution

def f(n):
  return (n%2==0 and
            n>=8)

Fix is generated; 
the developer may 
check the process 
(steps 1-9) 
on request.

Suggest
via LLM

10

Append to prompt
after generation

Legend

A B C D E

Annotated Run (1-10)

Pipeline (A-E)

Figure 1: The pipeline and a real example run of A���SD, with annotations in black boxes and lightly edited for clarity. Given
a detailed description of the scienti�c debugging concept and a description of the bug (A), A���SD will generate a hypothesis
about what the bug is and construct an experiment to verify, using an LLM (B), actually run the experiment using a debugger
or code execution (C), and decide whether the hypothesis is correct based on the experiment result using an LLM (D). The
hypothesize-observe-conclude loop is repeated until the LLM concludes the debugging or an iteration limit is reached; �nally,
a �x is generated (E), with an explanation (white boxes from (1) to (9)) that the developer may view.

3.2 Hypothesize-Observe-Conclude
With the initial prompt,A���SD starts iterating over the ‘hypothesize-
observe-conclude’ loop depicted in Figure 1 ( B - D ). The result
of each process is appended to the prompt to allow incremental
hypothesis prediction; i.e. when generating the conclusion in 3 ,
the LLM would predict it based on the concatenation of the initial
prompt, 1 , and 2 . We describe each iteration of the loop as a step:
for example, Figure 1 1 - 3 would make up one step.

Hypothesize. Here, we lead the language model to generate a
hypothesis by appending the token Hypothesis: to the prompt, so
that the language model generates a hypothesis about the bug. We
observe that the Prediction: and Experiment: line headers are
also generated in turn by the LLM, due to the detailed description
of the scienti�c debugging process provided by the prompt. The
important aspect for the next step is the Experiment command,
where the language model either generates a debugger command
that can be executed by a debugger, or a custom code modi�cation-
and-execution script so that the language model can ‘test’ a certain
change. As the document is in Markdown format, the Experiment
script is wrapped in backticks (�); this script is extracted from the
LLM output to get concrete code execution results in the next step.

Examples can be seen in Figure 1 1 , 4 , and 7 - note thatA���SD
also localizes the fault as a part of the hypothesizing process, thus
making fault localization explainable as well.

Observe. The generated experiment script is passed to a back-
ground process based on traditional software engineering tools that
provides real execution results back to the language model, so that
we can ground the generation process of A���SD on real results,
and also build credibility for developer presentation. The model
can either (i) invoke a composite debugger command by setting a
breakpoint and printing a value, or (ii) modify the code and run
the failing test with the aforementioned DSL. When executing a
debugger command, it is executed via the command-line interface
of the language-appropriate debugger, and the output from the last
subcommand of the composite command (assumed to be a print
command) is returned, as in Figure 1 2 and 5 . When the break-
point is within a loop, the debugger collects values at di�erent
timesteps of execution and returns them together, e.g. ‘At each loop
execution, the expression was: [v1, v2, ...]’, up to a maximum of 100
values. Meanwhile, upon test execution from a edit-and-execute
DSL command, if an exception is raised, the exception type and
message are returned as the observation; otherwise, the result ‘[No
exception triggered]’ is appended, as in Figure 1 8 .

Sungmin Kang

(PhD Candidate)

https://arxiv.org/abs/2304.02195


Yao et al., ICLR 2023 (https://arxiv.org/abs/2210.03629)

• What if we need external information 
for the in-context learning? In other 
words, can LLMs be given tools?


• Remember that this is still 
autocompletion:


• LLMs can be taught to signal the 
need to invoke tools


• Whenever LLMs need a tool 
invocation, we can do it ourselves 
and paste the outcome back into 
the context

ReAct

ReAct: Synergizing Reasoning and Acting in Language Models, Yao et al., ICLR 2023

https://arxiv.org/abs/2210.03629

Published as a conference paper at ICLR 2023
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Figure 1: (1) Comparison of 4 prompting methods, (a) Standard, (b) Chain-of-thought (CoT,
Reason Only), (c) Act-only, and (d) ReAct (Reason+Act), solving a HotpotQA (Yang et al., 2018)
question. (2) Comparison of (a) Act-only and (b) ReAct prompting to solve an AlfWorld (Shridhar
et al., 2020b) game. In both domains, we omit in-context examples in the prompt, and only show task
solving trajectories generated by the model (Act, Thought) and the environment (Obs).

answers from questions in arithmetic, commonsense, and symbolic reasoning tasks (Wei et al.,
2022). However, this “chain-of-thought” reasoning is a static black box, in that the model uses
its own internal representations to generate thoughts and is not grounded in the external world,
which limits its ability to reason reactively or update its knowledge. This can lead to issues like fact
hallucination and error propagation over the reasoning process (Figure 1 (1b)). On the other hand,
recent work has explored the use of pre-trained language models for planning and acting in interactive
environments (Ahn et al., 2022; Nakano et al., 2021; Yao et al., 2020; Huang et al., 2022a), with
a focus on predicting actions via language priors. These approaches usually convert multi-modal
observations into text, use a language model to generate domain-specific actions or plans, and then
use a controller to choose or execute them. However, they do not employ language models to reason
abstractly about high-level goals or maintain a working memory to support acting, barring Huang
et al. (2022b) who perform a limited form of verbal reasoning to reiterate spatial facts about the
current state. Beyond such simple embodied tasks to interact with a few blocks, there have not been
studies on how reasoning and acting can be combined in a synergistic manner for general task solving,
and if such a combination can bring systematic benefits compared to reasoning or acting alone.

In this work, we present ReAct, a general paradigm to combine reasoning and acting with language
models for solving diverse language reasoning and decision making tasks (Figure 1). ReAct
prompts LLMs to generate both verbal reasoning traces and actions pertaining to a task in an
interleaved manner, which allows the model to perform dynamic reasoning to create, maintain, and
adjust high-level plans for acting (reason to act), while also interact with the external environments
(e.g. Wikipedia) to incorporate additional information into reasoning (act to reason).
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• LLM = (Statistical) 
Autocompletion = completion 
not because it is the right 
choice, but because it is the 
most likely choice.


• How do we filter out 
hallucinations?

Hallucination 🌀



We are still in the Chinese room
John Searle, “Mind, Brains, and Programs” in 1980

• Suppose we have a computer program that 
behaves as if it understands Chinese 
language.


• You are in a closed room with the AI program 
source code.


• Someone passes a paper with Chinese 
characters written on it, into the room.


• You use the source code as instruction to 
generate the response to the input, and sends 
the response out of the room.


• Do you understand Chinese language, or not?



Wang et al., ICLR 2023 (https://arxiv.org/abs/2203.11171)

• When sampling answers from an 
LLM, take multiple answers with 
high temperature.


• If there is an answer that has the 
majority among the sampled 
answers, it is more likely to be 
the correct one.

Self-Consistency

https://arxiv.org/abs/2203.11171


Wang et al., ICLR 2023



But… really? That simple…?

“the face of a man who is surprised that the answer was so simple.”



LLM-Based Bug Reproduction
Kang et al., ICSE 2023

Answer to RQ2-3: LIBRO can reduce both the number of
bugs and tests that must be inspected: 33% of the bugs
are safely discarded while preserving 87% of the successful
bug reproduction. Among selected bug sets, 80% of all bug
reproductions can be found within 5 inspections.

C. RQ3. How well would LIBRO work in practice?

TABLE VII: Bug Reproduction in GHRB: x/y means x
reproduced out of y bugs

Project rep/total Project rep/total Project rep/total

AssertJ 3/5 Jackson 0/2 Gson 4/7
checkstyle 0/13 Jsoup 2/2 sslcontext 1/2

1) RQ3-1: We explore the performance of LIBRO when
operating on the GHRB dataset of recent bug reports. We find
that of the 31 bug reports we study, LIBRO can automatically
generate bug reproducing tests for 10 bugs based on 50 trials,
for a success rate of 32.2%. This success rate is similar to
the results from Defects4J presented in RQ1-1, suggesting
LIBRO generalizes to new bug reports. A breakdown of results
by project is provided in Table VII. Bugs are successfully
reproduced in AssertJ, Jsoup, Gson, and sslcontext, while they
were not reproduced in the other two. We could not reproduce
bugs from the Checkstyle project, despite it having a large
number of bugs; upon inspection, we find that this is because
the project’s tests rely heavily on external files, which LIBRO
has no access to, as shown in Section VI-C3. LIBRO also
does not generate BRTs for the Jackson project, but the small
number of bugs in the Jackson project make it difficult to draw
conclusions from it.

Answer to RQ3-1: LIBRO is capable of generating bug
reproducing tests even for recent data, suggesting it is not
simply remembering what it trained with.

2) RQ3-2: LIBRO uses several predictive factors correlated
with successful bug reproduction for selecting bugs and rank-
ing tests. In this research question, we check whether the
identified patterns based on the Defects4J dataset continue to
hold in the recent GHRB dataset.

Fig. 5: Distribution of the max_output_clus_size values for
reproduced and not-reproduced bugs

Recall that we use the maximum output cluster size as a
measure of agreement among the FIBs, and thus as a selection
criterion to identify whether a bug has been reproduced. To
observe whether the criterion is a reliable indicator to predict

Listing 4: Generated FIB test for AssertJ-Core-2666.
1 public void testIssue952() {

2 Locale locale = new Locale("tr", "TR");

3 Locale.setDefault(locale);

4 assertThat("I").as("Checking�in�tr_TR�locale").containsIgnoringCase("i

");

5 }

the success of bug reproduction, we observe the trend of
max_output_clus_size between the two datasets, with and
without BRTs. In Figure 5, we see that the bugs with no BRT
typically have small max_output_clus_size, mostly under
ten; this pattern is consistent in both datasets.

The ranking results of GHRB are also presented in Table VI.
They are consistent to the results from Defects4J, indicating
the features used for our ranking strategy continue to be good
indicators of successful bug reproduction.

Answer to RQ3-2: We find that the factors used for the
ranking and selection of LIBRO consistently predict bug
reproduction in real-world data.

3) RQ3-3: We present case studies of attempts by LIBRO
to reproduce bugs that either succeeded or failed.

TABLE VIII: Bug Report Successfully Reproduced: URLs
are omitted for brevity (AssertJ-Core Issue #2666)

Title assertContainsIgnoringCase fails to compare i and I in
tr_TR locale

See org.assertj.core.internal.Strings#assertContainsIgnoringCase
[url]
I would suggest adding [url] verification to just ban
toLowerCase(), toUpperCase() and other unsafe methods: #2664

We first present a successfully reproduced bug report, issue
#2685 for the AssertJ-Core project, in Table VIII. The bug
is that, in tr_TR locale, assertContainsIgnoringCase method is
mishandling the letter I. For this bug report, LIBRO gener-
ates the bug reproducing test in Listing 4. Despite the bug
report not containing any executable code, LIBRO successfully
generated a bug reproducing test that compares I and i,
using the containsIgnoringCase method referenced within the
report. A BRT for this bug is ranked at the second place,
suggesting a developer would have been quickly provided with
a reproducing test.

Listing 5: Generated FIB test for Checkstyle-11365.
1 public void testFinalClass() throws Exception {

2 final DefaultConfiguration checkConfig =

3 createModuleConfig(FinalClassCheck.class);

4 final String[] expected = CommonUtil.EMPTY_STRING_ARRAY;

5 verify(checkConfig, getPath("InputFinalClassAnonymousClass.java"),

expected);

6 }

We now turn to a bug report that is not successfully
reproduced. Table IX contains issue #11365 in the Checkstyle
project. The bug is that CheckStyle incorrectly decides that a
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(a) (b)

Figure 2: Overlap analysis of bugs successfully localized by
the techniques on the �rst rank.

SBFL, while also showing comparable performance in acc@3 and
acc@5 as well. It is noteworthy that A���FL showed comparable
performance to standalone FL techniques that require more soft-
ware artifacts from the developer even though it only uses only
failing tests to identify the fault location. This is in contrast to
other FL techniques which require more software artifacts from the
developer, such as the SBFL techniques DStar and Ochiai, which
generally require passing tests for good performance. In addition,
we �nd that A���FL outperforms the LLM+Test baseline, which
does not retrieve information from the repository, by a substantial
margin (84.0% improved performance on acc@1). This indicates
that the function calls are meaningfully contributing to better FL
performance. Overall, our results indicate that A���FL provides
state-of-the-art standalone fault localization performance and that
these results are made possible by providing the LLM with tools to
explore a repository.

To investigate how SBFL performs using the same artifacts as
A���FL, we compare it against the SBFL-F baseline as well, which
uses only failing tests; we �nd SBFL-F performed substantially
worse than A���FL. Such results demonstrate that A���FL could
provide state-of-the-art FL performance even without a preexisting
test suite unlike existing techniques, underscoring the wide applica-
bility of A���FL. For example, Kang et al. [13] note that 42% of the
top starred Java repositories had no detectable JUnit test suite, and
thus would su�er from low SBFL performance even if a failing test
were provided. On the other hand, A���FL could provide strong
performance even without a pre-existing test suite.

While A���FL achieved better acc@1 performance than the
best previous automatic FL techniques, it may be providing correct
results in a similar set of bugs to existing techniques, in which case
the results of A���FL would be less interesting, and practically
provide little marginal value to a supervised FL technique [19, 27, 37,
41]. We verify that the set of bugs that A���FL correctly localizes
was substantially distinct from the best baseline SBFL technique,
DStar, as shown in Figure 2 (a); more than 40% of the bugs that
A���FL could successfully localize were not correctly localized on
the �rst rank by DStar. Indeed, even when compared to the set of
all baseline techniques that we used, 32 bugs could be uniquely
localized by A���FL (Figure 2 (b)), indicating that its performance
is indeed orthogonal to other techniques.

Figure 3: Performance as more run information is merged
together.

Finally, we present the results of aggregating multiple runs in
Figure 3. As the �gure shows, as the algorithm is rerun and more
results are merged, the performance of A���FL uniformly increases
over all : , signifying that repeat runs can re�ne the rankings and
suggest new locations that were overlooked by previous runs, and
thus improve the performance consistently. Furthermore, the perfor-
mance does not seem to have plateaued, suggesting that more runs
could further improve the performance. These results demonstrate
that our result aggregation algorithm (Section 3.3) is contributing to
improving performance, as a single run alone, while still better than
existing approaches on the acc@1 measure, performs substantially
worse than the merged results (�nding about 40 less locations ac-
curately). Merging can also help improve the precision of A���FL:
in our experiments, when all �ve runs agreed on a bug location,
the likelihood that that location was actually a bug location was
93.5%, suggesting the possibility that such features could be used to
assess the con�dence A���FL has in predictions made, and thereby
reduce developer hassle on false positives.

4.3 Function Call Patterns
In addition to investigating the performance of A���FL relative
to baselines, we inspect how the LLM identi�es fault locations
within the framework of A���FL. First, we analyze the represen-
tative function call patterns in both successful and unsuccessful
runs of A���FL, and present the results in Figure 4. The function
call pattern which had the greatest success rate went as follows:
which classes were covered was retrieved, then which methods
were covered in a class of interest, then three consecutive methods
were observed. A common success pattern was to similarly observe
the code and comments of a target method. It appears that after
such a con�rmation process, A���FL could successfully identify
that the retrieved method was indeed faulty. On the other hand,
when A���FL failed, A���FL either inspected multiple methods
seemingly with no aim until the call budget was met (left), or did
not retrieve any information outside of class coverage and jumped

Kang, An, and Yoo

the LLM suggests EqualsBuilder.append(Object, Object) as
the culprit, which matches the developer patch location.

3.3 Finalizing Fault Localization Results
To address the inherent variability of LLMs, we propose to repeat
the A���FL process ' times (' = 5 in our experiment). After the
repetitions, we consolidate these results into a single FL outcome.
It is worth noting that if there exist multiple failing tests, we use
distinct failing test cases for each run of A���FL. Speci�cally, if
there is just one failing test case, all iterations are conducted with
that speci�c test case. However, when there are several failing
test cases, we adopt a round-robin approach, selecting one failing
test case for each run to ensure the even distribution of iterations.
For clari�cation, if the number of failing test cases exceeds the
prede�ned maximum repetition count, ', we restrict our selection
to only ' failing test cases.

Given the ' predictions generated from A���FL, we aggregate
the outputs to drive a ranked list of suspicious methods. First, we
assign scores to the methods �agged as suspicious byA���FL based
on whether they appear in the �nal predictions generated from
the ' runs. Speci�cally, if a �nal prediction contains a total of =
methods, we give a score of 1/= to each of these identi�ed methods.
These individual scores are then combined across all ' predictions.
To illustrate, supposing that the �nal predictions are {m1, m2},
{m2}, {m2, m3}, {m3}, and {m2, m4} across 5 runs, the score for
method m2 would be calculated as: 0.5 + 1.0 + 0.5 + 0.0 + 0.5 = 2.5
In case of a tie in scores, we prioritize methods that appeared in
earlier predictions over others. For instance, in the given example,
the resulting ranked list would be [m2, m3, m1, m4].

Finally, if there are methods that are not part of the �nal A���FL
results but are covered by the failing test cases, we append them
to the end of the ranked list to ensure the list includes all methods
relevant to the failures. These methods are sorted in descending
order of the number of failing tests covering each method. To break
ties, we give priority tomethods that aremore frequentlymentioned
during the function interaction process of A���FL (Figure 1, 2 ),
based on the intuition that methods that are inspected by the LLM
or related to inspected methods are more likely to be faulty than
methods that were never observed in the debugging process.

4 RESULTS
We present the setup and results of our experiments.

4.1 Experimental Setup
To evaluate how well A���FL could reveal the fault location, we
used the widely-used real-world bug benchmark, Defects4J [11].
We select this benchmark as it has been the subject of multiple fault
localization studies [6, 7, 32], and in particular the comparative
empirical study of Zou et al. [41], which compared the fault localiza-
tion performance of various fault localization families: SBFL [1, 33],
MBFL [21, 24], slicing [29], using the stack trace (Zou et al. [41] pro-
pose predicting methods in the stack based on Schroter et al. [25]),
predicate switching [39], IRFL [40], and history-based fault local-
ization [14]. Of these, IRFL and history-based fault localization are
excluded, as they could not identify any true bug locations as the
most likely fault element in the evaluation of Zou et al. We also

introduce two additional baselines relevant to our work: (i) how
well the same LLM can identify bug locations without any function
calls, i.e. call budget=0 (the LLM+Test baseline), and (ii) SBFL using
only failing tests (the SBFL-F baseline). We con�ne our compar-
isons of A���FL to these standalone metrics to maintain fairness
by limiting the evaluations to unsupervised FL techniques only. As
A���FL does not involve any explicit learning process, we antici-
pate that its outcomes can also serve as a feature for learning-based
FL techniques that combine multiple FL results [19, 27, 37, 41].

Following Zou et al., we use �ve projects from Defects4J (Chart,
Closure, Lang, Math, Time) which together comprise 353 bugs
in total, excluding some bugs that were deprecated to problems
(e.g. problem duplication) in the Defects4J dataset. To make the
comparison fair, we used the research artifact that Zou et al. publicly
shared to derive rankings in an identical setting to ours, namely
using an ordinal tiebreaker instead of the average tiebreaker, and
removing four deprecated bugs from the Defects4J benchmark. For
evaluation, we use the acc@k metrics, which measure the number
of bugs for which any buggy code element was correctly localized
within the top : suggestions; the acc@k metric has the additional
bene�t that it is a closer measure to what developers expect from
FL [16]. As LLM-based FL techniques generate text as the �nal
output instead of pinpointing a location, this text must be matched
with existing methods within the repository. In this work, we check
if the class name, method name, and method arguments of a fault
method all match the predicted method to check if A���FL has
accurately found the fault location. For our experiments, we used
the gpt-3.5-turbo-0613 language model from OpenAI.

4.2 FL Performance

Table 1: A���FL and FL Technique Performance from Zou et
al. [41]

Family Technique acc@1 acc@3 acc@5

Predicate Switching 42 99 121

Stack Trace 57 108 130

Slicing (frequency) 51 96 119

MBFL MUSE 73 139 161
Metallaxis 106 162 191

SBFL
Ochiai 122 192 218
DStar 125 195 216

SBFL-F 34 66 78

LLM-Based LLM+Test 81 94 97
A���FL 149 180 194

The FL performance of A���FL is compared against seven base-
line techniques that showed non-zero performance per Zou et al.
The results of this comparison are presented in Table 1. We �nd
that A���FL could �nd the accurate bug location on its �rst choice
(acc@1) in 149 cases, and that it shows superior performance to
all standalone techniques that it was compared against, including
those from the previously identi�ed best fault localization family
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contribution to performance. By providing both successful and un-
successful examples of A���FL debugging traces on di�cult tests
where the buggy method is not immediately apparent, we highlight
the strengths of A���FL, as well as potential weaknesses that point
to the need for future research.

2 BACKGROUND
This section provides the background and research context.

2.1 LLM Tool Use
By integrating chain-of-thought prompting [31] with the output
of tools, ReAct [38] demonstrated that LLMs were capable of in-
teracting with tools to achieve better performance on tasks. Since
then, LLM interaction with external tools has been widely explored.
HuggingGPT [26] has LLMs compose computer vision pipelines by
dynamically integrating the results of various computer vision mod-
els together. Voyager [28] allows LLMs to store and use acquired
skills in the form of functions, which led Voyager to complete tasks
in a computer game more e�ectively. LLM tool use has also been
explored in software engineering, notably for program repair: Xia et
al. [36] integrated test feedback into the prompt for better APR per-
formance, while Kang et al. [12] allows LLMs to invoke a debugger
to gather information and generate patches.

Recent iterations of OpenAI’s LLMs have embraced this change
and added a feature named function calling.1 This capability en-
ables users to provide function descriptions to the LLM, which can
respond with JSON data containing arguments required for calling
one of the available functions on the digression of the LLM. For in-
stance, if a user wants the LLM to compose a brief greeting email and
send it to Alice, they can provide an API call for sending emails, such
as send_email(receiver, content). The LLM can then respond
with a function call like send_email(�alice@example.com�, �Hi�)
to ful�ll the user’s request. While these functions can serve as ac-
tion executors, there is also the option to provide APIs that the
LLM can query to obtain essential information for responding to
users. For example, when a user inquires about the current weather
in a speci�c city while providing the LLM with a weather API call
description, the LLM has the choice to utilize the API call instead
of o�ering an immediate response. The function call request can be
captured and subsequently processed in an automated manner; the
results obtained from this processing are then communicated back
to the model, enabling seamless and e�cient interaction between
the user side and the LLM. In this context, we intend to de�ne
a set of functions that the LLM can employ to gather necessary
information for debugging purposes.

2.2 Fault Localization
Fault localization (FL) is a critical process in software debugging
that involves identifying speci�c locations in a program’s source
code where bugs are present. Automated FL techniques help de-
velopers save time, particularly in large codebases, by accurately
pinpointing the code locations most likely to be responsible for the
target bug. In addition to aiding manual debugging, FL also plays a
pivotal role in automated program repair techniques by providing
information about potential fault locations [22], thus enabling the
1https://platform.openai.com/docs/guides/gpt/function-calling

generation of e�ective patches. Common FL technique families
include Spectrum-based FL (SBFL), Information Retrieval-based FL
(IRFL), and Mutation-based FL (MBFL) [34]. While SBFL techniques
are known to be the most e�ective as standalone techniques [41],
they require coverage data from both passing and failing tests.
Meeting this requirement poses a challenge, particularly in the
domain of large enterprise software, where coverage measurement
can have high computational costs [4, 9, 15]. Additionally, most FL
techniques lack a rationale or explanation in their output, limiting
their reliability and practicality in real-world debugging scenarios.
As Kochhar et al. [16] note, rationales for FL are crucial for bug
�xing and incorporating practitioners’ domain knowledge. A clear
rationale in FL enables developers to understand why a particular
location is identi�ed as the culprit for the bug, helping them make
informed decisions during the �xing process. Additionally, practi-
tioners expressed their desire to use the provided rationale to assess
the correctness of FL output based on their domain knowledge.

3 APPROACH

📁
💻 get_code_snippet

💻 get_comments

②

① ③

Stage 1 Stage 2

④ ⑤

Codebase

💻 get_class_covered

💻 get_method_covered
⛳

Coverage

max. N 
times

AutoFL
Algorithm

Language
Model

Figure 1: Diagram of A���FL. Each arrow represents a
prompt / response between components, with the circled
numbers indicating the order of interactions. Function invo-
cations aremade atmost N times, where N is a predetermined
parameter of A���FL.

In this paper, we introduce A���FL, a novel automated and
autonomous FL technique that harnesses LLMs to localize bugs in
software given a single failing test. As mentioned earlier, dealing
with large code repositories is a challenge for LLMs, but we tackle
this issue by equipping LLMs with custom-designed functions to
enable code exploration and relevant information extraction.

An overview of A���FL is depicted in Figure 1. We employ a
two-stage prompting process, where the �rst stage involves in-
quiring about the root cause of the given failure, and the second
stage requests output about where the fault location is. In the �rst
stage, 1 A���FL provides a prompt to the LLM containing failing
test information and descriptions of available functions for debug-
ging to LLM. 2 The LLM interacts with the provided functions
autonomously, to extract the information needed for the debugging
of the given failure. 3 Based on the gathered information, the LLM
generates an explanation about the root cause of the observed fail-
ure. In the second stage, 4 the user queries for the location of the
identi�ed bug, and 5 the LLM responds by providing the culprit
method (FL output). In doing so, we can explicitly acquire both the
Root Cause Explanation and Bug Location.

Ask about failing test

Function-based 
Code Navigation

Request LocationExplanation

Location
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Fig. 1. Overview of DROIDAGENT with a task example.

have struggled with detecting loading screens, often using
prolonged wait times after each action. The loading screen’s
presence can be identified by checking for loading messages or
icon resource identifiers, and we discovered that the LLMs we
used can quite effectively detect loading screens and decide to
wait. So, instead of a fixed long wait, we let the Actor decide
when to wait. The “back” action is for navigating back, and
the “end task” action allows the Actor to conclude the task
before the fixed max action limit (13 in our experiments).

3) Observing and summarising the outcome(s): The state
of GUI may change after taking an action. DROIDAGENT
updates its perception of a screen with a structured textual
representation (JSON). However, for the Actor to capture the
current task context, it needs to be informed about the outcome
of the previous action. We use a separate Observer agent to
summarise the pertinent outcome of an action based on a diff
of the prior and updated GUI states represented as multi-line
strings. This is because representing both the prior and updated
state would lead to long prompts that may confuse the LLM.

4) Self-critique: The Actor may not always choose the
desired action. Once Actor starts down a wrong path by
initiating an undesirable action, it becomes challenging to
“escape” from that incorrect exploration trajectory. Therefore,
besides offering action results as observations, we incorporate
an additional element called “self-critique” into the Actor
of DROIDAGENT. Periodically (after every three actions in
the experiments), the self-critique element generates feedback
based on the task execution history up to that point and the
current GUI state description. This involves a separate prompt,
which explicitly asks for both a review of the task execution
history and, if the Actor appears to be struggling, a suggested

workaround plan. The prompt is sent to a more advanced
model, GPT-4, while the “main” conversation querying the
next action is handled by GPT-3.5. Consequently, the gener-
ated critique is injected to the Actor’s prompting context for
selecting the next action.

C. Task Reflector

Once a task execution round finishes, either by the Actor
calling the “end task” function or reaching the maximum
action length limit, Reflector is activated to reflect on and
create a concise description of the results of trying to perform
the task (binary label indicating task success or failure as
well). The input to this process is the entire task execution
history including the self-critique and all observations from
the working memory, the current GUI state, and the ultimate
goal (from task planning). We instruct the Reflector to “derive
memorable reflections to help planning next tasks and to
be more effective to achieve the ultimate goal”. We found
that this elaborate reflection process can help avoid that the
overall system “forgets” useful knowledge acquired during
task execution, given that individual agents summarise their
knowledge. We also found that having different agents focused
on specific tasks also helps avoid that involved LLM instances
drifts from their purpose, i.e. starts hallucinating or straying
from their intended function.

D. Memory Retrieval Modules

1) Task Retriever: Long-term memory contains a history
of performed task, i.e. task-specific knowledge as well as
reflections on whether the task succeeded (indicates this task
is supported by the app) or not. DROIDAGENT uses the
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Figure 1: Generative agents are believable simulacra of humanbehavior for interactive applications. In thiswork,we demonstrate
generative agents by populating a sandbox environment, reminiscent of The Sims, with twenty-�ve agents. Users can observe
and intervene as agents plan their days, share news, form relationships, and coordinate group activities.

ABSTRACT
Believable proxies of human behavior can empower interactive
applications ranging from immersive environments to rehearsal
spaces for interpersonal communication to prototyping tools. In
this paper, we introduce generative agents: computational software
agents that simulate believable human behavior. Generative agents
wake up, cook breakfast, and head to work; artists paint, while
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authors write; they form opinions, notice each other, and initiate
conversations; they remember and re�ect on days past as they plan
the next day. To enable generative agents, we describe an architec-
ture that extends a large language model to store a complete record
of the agent’s experiences using natural language, synthesize those
memories over time into higher-level re�ections, and retrieve them
dynamically to plan behavior. We instantiate generative agents
to populate an interactive sandbox environment inspired by The
Sims, where end users can interact with a small town of twenty-�ve
agents using natural language. In an evaluation, these generative
agents produce believable individual and emergent social behav-
iors. For example, starting with only a single user-speci�ed notion
that one agent wants to throw a Valentine’s Day party, the agents
autonomously spread invitations to the party over the next two
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flashcard[...]

Widget Retriever

self-
critique

Task Retriever

B

Fig. 1. Overview of DROIDAGENT with a task example.

have struggled with detecting loading screens, often using
prolonged wait times after each action. The loading screen’s
presence can be identified by checking for loading messages or
icon resource identifiers, and we discovered that the LLMs we
used can quite effectively detect loading screens and decide to
wait. So, instead of a fixed long wait, we let the Actor decide
when to wait. The “back” action is for navigating back, and
the “end task” action allows the Actor to conclude the task
before the fixed max action limit (13 in our experiments).

3) Observing and summarising the outcome(s): The state
of GUI may change after taking an action. DROIDAGENT
updates its perception of a screen with a structured textual
representation (JSON). However, for the Actor to capture the
current task context, it needs to be informed about the outcome
of the previous action. We use a separate Observer agent to
summarise the pertinent outcome of an action based on a diff
of the prior and updated GUI states represented as multi-line
strings. This is because representing both the prior and updated
state would lead to long prompts that may confuse the LLM.

4) Self-critique: The Actor may not always choose the
desired action. Once Actor starts down a wrong path by
initiating an undesirable action, it becomes challenging to
“escape” from that incorrect exploration trajectory. Therefore,
besides offering action results as observations, we incorporate
an additional element called “self-critique” into the Actor
of DROIDAGENT. Periodically (after every three actions in
the experiments), the self-critique element generates feedback
based on the task execution history up to that point and the
current GUI state description. This involves a separate prompt,
which explicitly asks for both a review of the task execution
history and, if the Actor appears to be struggling, a suggested

workaround plan. The prompt is sent to a more advanced
model, GPT-4, while the “main” conversation querying the
next action is handled by GPT-3.5. Consequently, the gener-
ated critique is injected to the Actor’s prompting context for
selecting the next action.

C. Task Reflector

Once a task execution round finishes, either by the Actor
calling the “end task” function or reaching the maximum
action length limit, Reflector is activated to reflect on and
create a concise description of the results of trying to perform
the task (binary label indicating task success or failure as
well). The input to this process is the entire task execution
history including the self-critique and all observations from
the working memory, the current GUI state, and the ultimate
goal (from task planning). We instruct the Reflector to “derive
memorable reflections to help planning next tasks and to
be more effective to achieve the ultimate goal”. We found
that this elaborate reflection process can help avoid that the
overall system “forgets” useful knowledge acquired during
task execution, given that individual agents summarise their
knowledge. We also found that having different agents focused
on specific tasks also helps avoid that involved LLM instances
drifts from their purpose, i.e. starts hallucinating or straying
from their intended function.

D. Memory Retrieval Modules

1) Task Retriever: Long-term memory contains a history
of performed task, i.e. task-specific knowledge as well as
reflections on whether the task succeeded (indicates this task
is supported by the app) or not. DROIDAGENT uses the
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Critique of task execution so far: Jade Green has correctly filled in

the question and answer fields, but the flashcard seems to be saved in

the "Default" deck instead of the intended "My Deck". This might have

happened because Jade Green changed the selected deck from "My Deck" to

"Default" after creating the flashcard.

Need a workaround plan?: Yes

Workaround plan for Jade Green: Jade Green needs to ensure that the

correct deck ("My Deck") is selected before saving the flashcard.

D. Reflecting on the task

At the end of the task execution, the reflector generates a
summary of the task result, and derives the knowledge from
the task execution history. The following is the example of the
task result and knowledge derivation with the given template
for the step-by-step reflection.

Summary of the task result: Jade Green successfully created a new

flashcard in the "My Deck" deck with the question "What is the capital

city of France?" [...truncated...]

Task done successfully?: Yes

Reflections on the task:

- Jade Green has learned how to create a new flashcard by filling the ’

Front’ and ’Back’ fields with question and answer respectively and then

saving it.

- Jade Green has learned that the app provides a dropdown field to

select the deck where the flashcard will be saved.

- Jade Green has learned that the app shows a popup message indicating

the number of cards added.

E. Planning another task with learnt knowledge

As an exploration continues on and discovers more widgets
and activities, ideally, the task planning process should benefit
from information about the past task executions. The subse-
quent task, “attaching a photo to the flashcard”, illustrated in
Figure 1, is based on previously creating a new flashcard. The
new task derives new knowledge from the observation that the
app allows users to add images, audio clip, recording audio,
and so on, to the flashcard. In future task planning, Planner
retrieves such knowledge and generate a new task, “Attach an
audio clip to the flashcard” with the following reasoning steps.

Reasoning about Jade Green’s new task: To provide a diverse and

realistic task that makes use of the core functionality of the app, Jade

Green should try to add an audio clip to a flashcard, which is an

important feature of AnkiDroid to enhance learning efficiency. This task

is not too difficult as it is similar to the previous task of adding an

image to a flashcard.

Jade Green’s next task: Add an audio clip to a flashcard.

V. EVALUATION

This section describes our experimental setup.

A. Research Questions

Our evaluation aims to answer the following questions.
1) RQ1. Testing Effectiveness: How does DROIDAGENT

compare to existing exploration techniques in exploring di-
verse functions within a limited time budget? With RQ1,
we aim to assess the diversity and depth of DROIDAGENT’s
exploration, primarily based on screen coverage.

2) RQ2. Usefulness: How effectively do the tasks generated
by DROIDAGENT serve as maintainable testing scenarios, re-
flecting the supported functionalities of AUTs? With RQ2, we
aim to find out whether the tasks generated by DROIDAGENT
are useful as valid test scenarios, which can be used for
regression testing or further test case generation.

3) RQ3. Ablation: How does each component of the agent
architecture impact the agent’s exploration effectiveness? With
RQ3, we aim to assess the contribution of each component of
the agent architecture to the overall exploration effectiveness.

4) RQ4. Cost: What is the monetary cost of running
DROIDAGENT with the latest state-of-the-art large language
models? With RQ4, we aim to present the present-day cost
of running DROIDAGENT, and provide a view for adopting
DROIDAGENT in practice.

B. Experimental Setup

In this section, we describe our experimental setup.
1) Subjects: Table I shows the 15 subject apps we study.

We start the app selection from the widely used Themis
benchmark [16], which originally contains 23 open-source
Android apps. We are forced to exclude eight apps due to
deprecated servers or APIs, three apps whose functionalities
depend heavily on remote servers and are not easily resettable,
one app that crashes on startup, and another that has only a sin-
gle activity. We selected five additional apps from FDroid [35]
to broaden the range of our subject app categories.

2) Metrics: Our primary metric is screen coverage, with
a specific focus on activity coverage in Android serving as
an indicator for exploration diversity. Activity coverage is
typically defined by the number of activities accessed during
the exploration of the AUT. We only take account of internal
activities that include the package name of the target applica-
tion, since there can be external activities that do not represent
any accessible screens within the AUT (they typically exist to
detect memory leaks or to perform crash reports).

While activity coverage is widely used and effective in
evaluating the “breadth” of exploration, it doesn’t necessarily
capture the desired “depth” of the exploration. For instance, an
exploration technique might navigate to a specific activity, it
may also return to the previous one without any additional
interaction. To further evaluate if the test cases generated
by each technique encompass the target app’s comprehensive
functionality, we employ the concept of “feature coverage”.
This represents the fraction of functional features covered
by test cases, as delineated in the taxonomy suggested by
Coppola et al. [36]. Given that we do not have precise
specifications for the subject apps, we categorise all discerned
functional features of each app identified by all comparison
target techniques, until the consensus of three authors. We
then report the number of features covered by each technique.

3) Baselines: We compare DROIDAGENT with the follow-
ing four baselines described below:

• Monkey [17]: Monkey is a widely used random Android
GUI exploration tool for Android.

Task 1: Create a new 
account in the Chat App

Task 2: Create a second user 
account on the Chat App

Feedback: Email 
length limit

Adaptation: Fix 
email address

Task 3: Initiate a chat with 
the second account created

Fig. 10. Example of testing scenarios by DROIDAGENT for creating multiple
accounts in a simple chat app.

D. Cost (RQ4)

Having demonstrated DROIDAGENT’s ability to effectively
explore app screens, a vital question arises: what is the cost
of running the agent for app exploration and testing? We
measured the total number of tokens contained in the prompt
and the generated output both for GPT-3.5 and GPT-4 models,
as shown in Figure 9. The number of tokens for the prompt
depend on the complexity of GUI layout of each application.
Accordingly, the present-time cost for running DROIDAGENT
on a single application with a two-hour budget ranges between
$13 to $22, summing up the cost from both the GPT-3.5 and
GPT-4 models, averaging $18.1. Given the trend of decreasing
cost per token charged by OpenAI, as well as the rapid
advancements of open source LLMs, we expect the cost of
running DROIDAGENT to be reduced and affordable.

VII. DISCUSSION

This section decribes a couple of observed behaviour of
DROIDAGENT that warrants some discussion and future work.

A. Testing social applications

So far, testing of social applications that would require
multiple accounts has been considered out of scope for the
existing exploration techniques. We demonstrate the potential
of applying DROIDAGENT on testing multi-user interactions
in Figure 10, which contains testing scenarios generated by
DROIDAGENT with a custom goal of “testing multiple user
interactions”. The first account created follows the persona
profile, and the credentials for the second account is newly
synthesised as a variation of the persona profile. Moreover,
while creating the second account, DROIDAGENT encounters a
truncated email address due to the length limit of the textfield,

but later it successfully works around the issue by using a
shorter email address.

B. Testing external use of an mobile application
A mobile application is not always used in isolation. In

fact, it is both possible to temporarily navigate out of the
app under test and return to the app (e.g., selecting a picture
from the gallery app, share an app data via email), and start
the app from the external app (e.g., opening a link from a
browser). In the former case (temporary navigation to the
external app), to avoid accidentally being out of the app
too long, DROIDAGENT currently imposes a fixed interaction
limit on external apps and returns to the target app automat-
ically. However, we observe some cases that DROIDAGENT
prematurely terminated essential interactions in the external
app due to this limit. Additionally, some activities among
the subject apps were exclusively triggered by external apps,
such as the WidgetConfiguration activity, which is only
accessed by an app launcher. By design, DROIDAGENT is not
limited to the target app. Broadening DROIDAGENT’s scope
to test functionalities of AUT across multiple apps presents a
promising avenue for future exploration.

VIII. THREATS TO VALIDITY

Internal Validity. Our study might have been affected by
the inherent randomness associated with LLMs. Given the
monetary constraints linked to API requests, we could not
conduct multiple runs, potentially leaving biases. Additionally,
one of the baselines, our version of GPTDroid, includes mod-
ifications to some of its components. In our implementation,
we observed that the LLM context limit was reached post ten
actions, forcing a reset of the preceding conversation prompt,
an issue not tackled in the original paper.
External Validity. Our study utilised a relatively limited set
of benchmarks as well as underlying LLMs, and therefore
may not generalise. We tried to use an existing benchmark
of Android apps, Themis [16]. Another potential threat is data
contamination. The inclusion of knowledge about the subject
applications in the training data may bias the results. Further
studies of more apps and other open source LLMs are needed
to address this threat.

IX. CONCLUSION

We present DROIDAGENT, an autonomous testing agent
for Android GUI testing. Unlike existing automated GUI
testing tools for Android, DROIDAGENT sets its own mean-
ingful tasks according to the functionalities of the app under
test, and subsequently seeks to achieve them. Our empirical
evaluation of DROIDAGENT against four baselines shows
that DROIDAGENT is capable of exploring more Android
activities on average, and it does so while concurrently trying
to achieve meaningful app specific tasks. DROIDAGENT also
exhibits some novel behaviour, such as reusing data it created
earlier for later interactions with the app, or creating multiple
accounts to test the app. We believe autonomous agents can
make significant contributions to automation of GUI testing.
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Fig. 2. Trends in number of arXiv preprints. The blue line denotes the number
of preprints categorised under “CS”. The orange line denotes the number of
preprints in AI (cs.AI), Machine Learning (cs.LG), Neural and Evolutionary
Computing (cs.NE), Software Engineering (cs.SE), and Programming Lan-
guage (cs.PL) whose title or abstract contains either “Large Language Model”,
“LLM”, or “GPT”. The green line denotes the number of preprints in SE and
PL categories whose title or abstract contains either “Large Language Model”,
“LLM”, or “GPT”

Fig. 3. Proportions of LLM papers and SE papers about LLMs. By “about
LLMs”, we mean that either the title or the abstract of a preprint contains
“LLM”, “Large Language Model”, or “GPT”. The blue line denotes the
percentage of the number of preprints about LLMs out of the number of
all preprints in the CS category. The orange line denotes the percentage of
the number of preprints about LLMs in cs.SE and cs.PL categories out of all
preprints about LLMs

Figure 2, shows the growth in the number of arXiv-
published papers on Computer Science (|A|, in Blue), and on
LLMs (|L|, in orange). Those papers specifically on Software
Engineering and LLMs are depicted in Green (|L \ S|).
Given the rapid rise in overall publication volumes, we use
a logarithmic scale for the vertical axis. Unsurprisingly, we
see an overall rise in the number of CS publications.

Also, given the recent upsurge in attention for LLMs, the
exponential rise in the number of papers on LLMs is relatively
unsurprising.

Perhaps more interesting is the rapid uptake of Software
Engineering applications of LLMs, as revealed by the growth
trend, pictured in green on this figure. In order to examine
this trend in more detail, we plot the proportion of LLM pub-
lications (L) to all CS publications (A) in blue, as well as the
proportions of LLM-based software engineering publications
(L \ S) to all LLM publications in orange in Figure 3. As
can be seen, the proportion of LLM papers on LLM-based
Software Engineering has been rising dramatically since 2019.
Already, more than 10% of all papers on LLMs are concerned
with LLM-based Software Engineering.

As a result of this growth, we can expect many other surveys
of LLM-Based SE. The rapid expansion of the literature makes
it unlikely that further comprehensive SE-wide studies will fit
the space constraints of a single paper, but we can expect many
specific comprehensive surveys of sub-areas of interest, and
also Systematic Literature Reviews (SLRs) that tackle SE-wide
crosscutting issues by asking specific research questions of
the primary literature in the systematic review. Already, such
SLRs are appearing. For example, Hou et al. [15] provided
an excellent recent SLR covering 229 research papers from
2017 to 2023 reporting SE tasks tackled, data collection and
preprocessing techniques, and strategies for optimising LLM
performance (such as prompt engineering).

The remainder of this paper is organised to follow the top-
level software development activities and research domains as
depicted in Figure 1.

II. PRELIMINARIES

A. Large Language Models

A Large Language Model (LLM) refers to an Artificial
Intelligence (AI) model that has been trained on large amounts
of data and is able to generate text in a human-like fashion.
Table III provides a glossary of LLM terminology to make the
paper self-contained.
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the number of preprints about LLMs in cs.SE and cs.PL categories out of all
preprints about LLMs

Figure 2, shows the growth in the number of arXiv-
published papers on Computer Science (|A|, in Blue), and on
LLMs (|L|, in orange). Those papers specifically on Software
Engineering and LLMs are depicted in Green (|L \ S|).
Given the rapid rise in overall publication volumes, we use
a logarithmic scale for the vertical axis. Unsurprisingly, we
see an overall rise in the number of CS publications.

Also, given the recent upsurge in attention for LLMs, the
exponential rise in the number of papers on LLMs is relatively
unsurprising.

Perhaps more interesting is the rapid uptake of Software
Engineering applications of LLMs, as revealed by the growth
trend, pictured in green on this figure. In order to examine
this trend in more detail, we plot the proportion of LLM pub-
lications (L) to all CS publications (A) in blue, as well as the
proportions of LLM-based software engineering publications
(L \ S) to all LLM publications in orange in Figure 3. As
can be seen, the proportion of LLM papers on LLM-based
Software Engineering has been rising dramatically since 2019.
Already, more than 10% of all papers on LLMs are concerned
with LLM-based Software Engineering.

As a result of this growth, we can expect many other surveys
of LLM-Based SE. The rapid expansion of the literature makes
it unlikely that further comprehensive SE-wide studies will fit
the space constraints of a single paper, but we can expect many
specific comprehensive surveys of sub-areas of interest, and
also Systematic Literature Reviews (SLRs) that tackle SE-wide
crosscutting issues by asking specific research questions of
the primary literature in the systematic review. Already, such
SLRs are appearing. For example, Hou et al. [15] provided
an excellent recent SLR covering 229 research papers from
2017 to 2023 reporting SE tasks tackled, data collection and
preprocessing techniques, and strategies for optimising LLM
performance (such as prompt engineering).

The remainder of this paper is organised to follow the top-
level software development activities and research domains as
depicted in Figure 1.

II. PRELIMINARIES

A. Large Language Models

A Large Language Model (LLM) refers to an Artificial
Intelligence (AI) model that has been trained on large amounts
of data and is able to generate text in a human-like fashion.
Table III provides a glossary of LLM terminology to make the
paper self-contained.
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contribution to performance. By providing both successful and un-
successful examples of A���FL debugging traces on di�cult tests
where the buggy method is not immediately apparent, we highlight
the strengths of A���FL, as well as potential weaknesses that point
to the need for future research.

2 BACKGROUND
This section provides the background and research context.

2.1 LLM Tool Use
By integrating chain-of-thought prompting [31] with the output
of tools, ReAct [38] demonstrated that LLMs were capable of in-
teracting with tools to achieve better performance on tasks. Since
then, LLM interaction with external tools has been widely explored.
HuggingGPT [26] has LLMs compose computer vision pipelines by
dynamically integrating the results of various computer vision mod-
els together. Voyager [28] allows LLMs to store and use acquired
skills in the form of functions, which led Voyager to complete tasks
in a computer game more e�ectively. LLM tool use has also been
explored in software engineering, notably for program repair: Xia et
al. [36] integrated test feedback into the prompt for better APR per-
formance, while Kang et al. [12] allows LLMs to invoke a debugger
to gather information and generate patches.

Recent iterations of OpenAI’s LLMs have embraced this change
and added a feature named function calling.1 This capability en-
ables users to provide function descriptions to the LLM, which can
respond with JSON data containing arguments required for calling
one of the available functions on the digression of the LLM. For in-
stance, if a user wants the LLM to compose a brief greeting email and
send it to Alice, they can provide an API call for sending emails, such
as send_email(receiver, content). The LLM can then respond
with a function call like send_email(�alice@example.com�, �Hi�)
to ful�ll the user’s request. While these functions can serve as ac-
tion executors, there is also the option to provide APIs that the
LLM can query to obtain essential information for responding to
users. For example, when a user inquires about the current weather
in a speci�c city while providing the LLM with a weather API call
description, the LLM has the choice to utilize the API call instead
of o�ering an immediate response. The function call request can be
captured and subsequently processed in an automated manner; the
results obtained from this processing are then communicated back
to the model, enabling seamless and e�cient interaction between
the user side and the LLM. In this context, we intend to de�ne
a set of functions that the LLM can employ to gather necessary
information for debugging purposes.

2.2 Fault Localization
Fault localization (FL) is a critical process in software debugging
that involves identifying speci�c locations in a program’s source
code where bugs are present. Automated FL techniques help de-
velopers save time, particularly in large codebases, by accurately
pinpointing the code locations most likely to be responsible for the
target bug. In addition to aiding manual debugging, FL also plays a
pivotal role in automated program repair techniques by providing
information about potential fault locations [22], thus enabling the
1https://platform.openai.com/docs/guides/gpt/function-calling

generation of e�ective patches. Common FL technique families
include Spectrum-based FL (SBFL), Information Retrieval-based FL
(IRFL), and Mutation-based FL (MBFL) [34]. While SBFL techniques
are known to be the most e�ective as standalone techniques [41],
they require coverage data from both passing and failing tests.
Meeting this requirement poses a challenge, particularly in the
domain of large enterprise software, where coverage measurement
can have high computational costs [4, 9, 15]. Additionally, most FL
techniques lack a rationale or explanation in their output, limiting
their reliability and practicality in real-world debugging scenarios.
As Kochhar et al. [16] note, rationales for FL are crucial for bug
�xing and incorporating practitioners’ domain knowledge. A clear
rationale in FL enables developers to understand why a particular
location is identi�ed as the culprit for the bug, helping them make
informed decisions during the �xing process. Additionally, practi-
tioners expressed their desire to use the provided rationale to assess
the correctness of FL output based on their domain knowledge.
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Figure 1: Diagram of A���FL. Each arrow represents a
prompt / response between components, with the circled
numbers indicating the order of interactions. Function invo-
cations aremade atmost N times, where N is a predetermined
parameter of A���FL.

In this paper, we introduce A���FL, a novel automated and
autonomous FL technique that harnesses LLMs to localize bugs in
software given a single failing test. As mentioned earlier, dealing
with large code repositories is a challenge for LLMs, but we tackle
this issue by equipping LLMs with custom-designed functions to
enable code exploration and relevant information extraction.

An overview of A���FL is depicted in Figure 1. We employ a
two-stage prompting process, where the �rst stage involves in-
quiring about the root cause of the given failure, and the second
stage requests output about where the fault location is. In the �rst
stage, 1 A���FL provides a prompt to the LLM containing failing
test information and descriptions of available functions for debug-
ging to LLM. 2 The LLM interacts with the provided functions
autonomously, to extract the information needed for the debugging
of the given failure. 3 Based on the gathered information, the LLM
generates an explanation about the root cause of the observed fail-
ure. In the second stage, 4 the user queries for the location of the
identi�ed bug, and 5 the LLM responds by providing the culprit
method (FL output). In doing so, we can explicitly acquire both the
Root Cause Explanation and Bug Location.
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Fig. 1. Overview of DROIDAGENT with a task example.

have struggled with detecting loading screens, often using
prolonged wait times after each action. The loading screen’s
presence can be identified by checking for loading messages or
icon resource identifiers, and we discovered that the LLMs we
used can quite effectively detect loading screens and decide to
wait. So, instead of a fixed long wait, we let the Actor decide
when to wait. The “back” action is for navigating back, and
the “end task” action allows the Actor to conclude the task
before the fixed max action limit (13 in our experiments).

3) Observing and summarising the outcome(s): The state
of GUI may change after taking an action. DROIDAGENT
updates its perception of a screen with a structured textual
representation (JSON). However, for the Actor to capture the
current task context, it needs to be informed about the outcome
of the previous action. We use a separate Observer agent to
summarise the pertinent outcome of an action based on a diff
of the prior and updated GUI states represented as multi-line
strings. This is because representing both the prior and updated
state would lead to long prompts that may confuse the LLM.

4) Self-critique: The Actor may not always choose the
desired action. Once Actor starts down a wrong path by
initiating an undesirable action, it becomes challenging to
“escape” from that incorrect exploration trajectory. Therefore,
besides offering action results as observations, we incorporate
an additional element called “self-critique” into the Actor
of DROIDAGENT. Periodically (after every three actions in
the experiments), the self-critique element generates feedback
based on the task execution history up to that point and the
current GUI state description. This involves a separate prompt,
which explicitly asks for both a review of the task execution
history and, if the Actor appears to be struggling, a suggested

workaround plan. The prompt is sent to a more advanced
model, GPT-4, while the “main” conversation querying the
next action is handled by GPT-3.5. Consequently, the gener-
ated critique is injected to the Actor’s prompting context for
selecting the next action.

C. Task Reflector

Once a task execution round finishes, either by the Actor
calling the “end task” function or reaching the maximum
action length limit, Reflector is activated to reflect on and
create a concise description of the results of trying to perform
the task (binary label indicating task success or failure as
well). The input to this process is the entire task execution
history including the self-critique and all observations from
the working memory, the current GUI state, and the ultimate
goal (from task planning). We instruct the Reflector to “derive
memorable reflections to help planning next tasks and to
be more effective to achieve the ultimate goal”. We found
that this elaborate reflection process can help avoid that the
overall system “forgets” useful knowledge acquired during
task execution, given that individual agents summarise their
knowledge. We also found that having different agents focused
on specific tasks also helps avoid that involved LLM instances
drifts from their purpose, i.e. starts hallucinating or straying
from their intended function.

D. Memory Retrieval Modules

1) Task Retriever: Long-term memory contains a history
of performed task, i.e. task-specific knowledge as well as
reflections on whether the task succeeded (indicates this task
is supported by the app) or not. DROIDAGENT uses the
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