3D Hand Pose Estimation

Tae-Kyun (T-K) Kim Computer Vision and Learning Lab School of Computing KAIST

https://sites.google.com/view/tkkim/

aka Vision-based 3D Finger Tracking

T-K Kim, KAIST, https://sites.google.com/view/tkkim/

How to interact with AR/VR environment

More examples: AR/VR in autonomous cars

Driver-vehicle interaction

Physical interactions and robotics

Robot-human interaction

[ICL & Samsung Research]

Problem statement

T-K Kim, KAIST, https://sites.google.com/view/tkkim/

3D Dense pose prediction ECCV2020

- HANDS19 Challenge @ ICCV includes: <u>Hand-object interaction</u>, depth and colour modalities, extrapolation capabilities, the use of synthetic data (MANO).
- Fitted mesh models to BigHand2.2M, F-PHAB, HO-3D datasets, are provided.

• Hierarchical, multi-task, transductive learning: STR forest ICCV13oral

 Hierarchical sampling optimisation ICCV15oral/TPAMI18

layer

frame t-1 pose result

frame t

input

image

layer 4 (index)

full hand

frame t

pose

result

*

laver 2

hypothesis 2

Run-time speed 62.5
 fps and ICVL dataset:
 LRF CVPR14oral/TPAMI16

• Spatial attention deep net ECCV16

• BigHand2.2M benchmark CVPR17 [used by 116 unique institutions, 491 downloads]

t-SNE embedding. *BigHand2.2M* (blue), ICVL (red), and NYU (green). global view point (left), articulation space in 25D (right)

2D?

... or 3D?

A comparative study CVPR18spotlight:
 of 17+ participating methods H A N D S 2017

Augmented Skeleton Space Transfer
 CVPR18oral

 Hierarchical Mixture Density Network ECCV18oral

• FPHA benchmark CVPR18:

Egocentric views, Hand-object interaction, 3D hand/object pose, action labels, +1K sequences [used by 123 unique institutions: 236 licenses]

 RGB-based Dense 3D Hand Pose via Neural Rendering CVPR19

 Domain Adaptation via GAN and 3D Mesh Model CVPR2020 bestpaperfinalist

• HANDS19 Challenge ECCV2020: Hand-Object Interaction, Dense Pose, Fitted mesh models

• We have co-organised 6 CVPR/ICCV/ECCV workshops (2015-2022) and 2 challenge on 3D hand pose.

Applications

 Physics-Based Dexterous Manipulations IROS2020

• DeepFisheye UIST2020

With a Single Infrared Camera
 via Domain Transfer Learning
 ISMAR2020

Latest Innovations

 Im2Hands: Learning Attentive Implicit Representation of Interacting Two-Hand Shapes, CVPR2023

• Latent Hough Forest ECCV14/TPAMI16 : novel template-matching based splitting, oneclass learning

 Autonomous unfolding clothes ICRA14 bestpaperaward: regression forests, probabilistic active planning

• Active Forest ECCV14 : multi-task learning, next-best view learning in RF

• 6D Object Detection and Next-Best-View Prediction in the Crowd CVPR16

 Multi-task Deep Network and Joint Registration BMVC18

- BOP: Benchmark for 6D Object Pose Estimation ECCV18 89 object models, 62K test images, 110K test objects, 15+ participating methods
- We have co-organised 5 ICCV/ECCV workshops (2015-2019) and SIXD challenge at ICCV17 on 6D object pose.

Active 6D Pose Estimation by Deep **Reinforcement Learning IROS2020**

terstoisser et al. [3] with extra ground T-LESS [2] - use Primesense images ruth from Brachmann et al. [4]

TUD Light

Toyota Light

Doumanoolou et al. [6] - reduced version

 Self-Supervised 6D Object Pose Estimation 3DV2020: Pose Consistency, Warp-Alignment

Geometry-based Distance
 Decomposition for Monocular 3D
 Object Detection, ICCV2021

Distance-Normalized
 Unified Representation for
 Monocular 3D Object
 Detection, ECCV2020

Im2Hands: Learning Attentive Implicit Representation of Interacting Two-Hand Shapes

Jihyun Lee, Minhyuk Sung, Honggyu Choi, Tae-Kyun (T-K) Kim

Input

Input Alignment

Original Viewpoint Reconstruction

Motivation: Existing Hand Reconstruction Methods

Mesh-Based Two-Hand Representations [1, 2]

- Existing methods directly regress MANO
 [3] parameters *or* vertex positions of
 MANO meshes.
- However, they model hands with lowresolution meshes with a fixed MANO topology (|V| = 778).

[1] Li *et al.* Interacting attention graph for single image two-hand reconstruction. In CVPR, 2022.
[2] Zhang *et al.* Interacting two-hand 3d pose and shape reconstruction from single color image. In ICCV, 2021.
[3] Romeo *et al.* Embodied Hands: Modeling and Capturing Hands and Bodies Together. In SIGGRAPH Asia, 2017.

Motivation: Existing Hand Reconstruction Methods

Implicit Single-Hand Representation

- Existing method predicts hand occupancy field conditioned on pose inputs.
- However, they cannot incorporate twohand interaction contexts or perform image-based reconstruction.

[1] Karunratanakul et al. A skeleton-driven neural occupancy representation for articulated hands. In 3DV, 2021.

Proposed Method

Im2Hands: The first neural implicit representation of two interacting hands

- It learns resolution-free geometry of two-hands with high hand-to-hand and hand-to-image coherency.
- It can produce two-hand meshes with an arbitrary resolution.
- It does not require dense vertex correspondences or MANO parameter annotations for training.

[1] Li et al. Interacting attention graph for single image two-hand reconstruction. In CVPR, 2022.

Input Image

Mesh Mesh Zoom-In Image Alignment (Original Viewpoint) (Alternative Viewpoint) IntagHand

(Ours)

Input Image

Image Alignment

Im2Hands (Ours) Mesh (Original Viewpoint)

Mesh (Alternative Viewpoint)

Zoom-In

Method Overview (1/2)

• Our goal is to learn continuous 3D occupancy field of interacting two-hand geometry:

$$\mathcal{O}(x \mid \alpha, \beta) \rightarrow [o_l, o_r]$$

where \mathcal{O} is a neural network that maps a query point $x \in \mathbb{R}^3$ to occupancy probabilities for each hand $o_l, o_r \in [0, 1]$

- Note that our two-hand occupancy is learned conditioned on a shape observation lpha and a pose eta observation n ,

which are represented as an RGB image and sparse two-hand 3D keypoints, respectively.

Method Overview (2/2)

- To effectively handle the shape complexity and interaction context between two hands, we propose two novel attention-based modules that performs:
 - 1) Initial occupancy estimation in the hand canonical space, and
 - 2) Interaction context-aware occupancy refinement in the original posed space.

Initial Hand Occupancy Estimation (1/2)

- We first estimate initial occupancy probabilities for each hand in the **canonical space**.
- Motivated by existing articulated implicit functions^{1, 2}, we train part occupancy networks to predict occupancy values for each bone transformed to canonical pose:

$$\mathcal{I}(x \mid I, J) = \max_{b=1, \dots, B} \{ \bar{\mathcal{H}}_b(\mathbf{T}_b x, f_b^{\phi}, f_x^{\phi}, f_b^{\omega}) \}$$

where $\bar{\mathcal{H}}_b$ is an MLP-based part occupancy network for bone b, and \mathbf{T}_b is the canonicalization matrix for bone b computed using the input 3D hand keypoints.

[1] Karunratanakul *et al.* A skeleton-driven neural occupancy representation for articulated hands. In 3DV, 2021.[2] Deng, *et al.* Neural articulated shape approximation. In ECCV, 2020.

Initial Hand Occupancy Estimation (2/2)

• When estimating part occupancies, we use hand features for modeling shape- and pose- dependent deformations.

$$\mathcal{I}(x \mid I, J) = \max_{b=1, ..., B} \{ \overline{\mathcal{H}}_b(\mathbf{T}_b x, f_b^{\phi}, f_x^{\phi}, f_b^{\omega}) \}$$
Canonicalized Guery Canonicalized Shape and pose features

- Unlike existing articulated implicit functions^{1, 2} that use **bone-wise** global features (*i.e.*, bone length feature f_b^{ϕ} and canonicalization matrix feature f_b^{ω}), we propose to use additional **query-wise** shape feature f_x^{ϕ} to recover fine-grained shape details observed from an image.
- To this end, we introduce **query-image cross attention** to extract a per-query feature while attending to image regions informative for estimating occupancy at the query *x*.

[1] Karunratanakul *et al.* A skeleton-driven neural occupancy representation for articulated hands. In 3DV, 2021.[2] Deng, *et al.* Neural articulated shape approximation. In ECCV, 2020.

Context-Aware Occupancy Refinement

- We additionally propose to perform two-hand occupancy refinement in the original posed space.
- To encode the initial geometry of two hands, we represent them as anchored feature cloud (*i.e.*, feature vectors of queries evaluated to be on surface by our initial occupancy network).
- We then apply cross-attention between (1) a query, (2) anchor features, and (3) a context latent vector (extracted from global features of initial two-hand shape and the input image) to estimate a refined occupancy value.

Input Keypoint Refinement (Optional)

- We further consider image-based two-hand reconstruction using Im2Hands, where no ground truth hand keypoints are available as inputs.
- To enable robust shape reconstruction from keypoints predicted from an off-the-shelf image-based twohand keypoint estimator, we introduce an optional keypoint refinement module that can alleviate input keypoint noise.

$\mathcal{K}(J, I) = \mathrm{MSA}([\mathrm{GCN}(\mathrm{KptEnc}(J)), \mathrm{ImgEnc}(I)])$

where the refined keypoints are estimated via multi-headed attention (MSA) between keypoint features encoded using a graph convolutional network $\operatorname{GCN}(\operatorname{KptEnc}(J))$ and input image features $\operatorname{ImgEnc}(I)$

Architecture details

Loss Functions

- For our initial occupancy network and context-aware occupancy refinement network, we use MSE loss that measures deviation between the ground truth and the predicted occupancy values.
- For context-aware occupancy refinement network, we additionally use **penetration loss** to penalize the refined two-hand occupancy values that are estimated to be occupied in both hands at the same query position.

$$\mathcal{L}_{pen} = \frac{1}{|\mathcal{X}|} \sum_{(I,J)\in\mathcal{X}} \sum_{x\in\mathcal{P}} \mathcal{R}_l(x|I, J) \cdot \mathcal{R}_r(x|I, J),$$

where $\mathcal{R}_l(\cdot) > 0.5$ and $\mathcal{R}_r(\cdot) > 0.5$.

In the above equation, \mathcal{X} is a set of training samples, \mathcal{P} is a set of training query points, and \mathcal{R}_l and \mathcal{R}_r are functions that return the refined occupancy probabilities for left and right hand, respectively.

Two-Hand Reconstruction Results (1/2)

• Results on InterHand2.6M dataset [1] using image and ground truth keypoint inputs

Method	Inputs	IoU (%) ↑	$ $ CD (mm) \downarrow
Two-Hand-Shape-Pose [42]	\mathbf{I}, \mathbf{L}	54.8	5.51
IntagHand [23]	I, L	67.0	3.88
HALO [18]	J	74.7	2.62
HALO (modified) [18]	I , J	75.8	2.51
Im2Hands (Ours)	I , J	77.8	2.30

Two-Hand Reconstruction Results (2/2)

• Results on InterHand2.6M dataset [1] using image inputs only

Method	IoU (%) ↑	CD (mm)↓
Two-Hand-Shape-Pose [42]	48.4	6.09
IntagHand [23]	59.0	4.69
DIGIT [11] + HALO [18]	45.1	7.64
IntagHand [23] + HALO [18]	53.8	5.38
DIGIT [11] + Im2Hands (Ours)	59.4	4.75
IntagHand [23]+ Im2Hands (Ours)	62.1	4.35

Shape Reconstruction Results

Keypoint Refinement Results		
Method	$ \qquad MPJPE (mm) \downarrow$	
DIGIT [11]	16.75	
DIGIT [11] + K (Ours)	10.70	
IntagHand [23]	10.13	
IntagHand [23] + K (Ours)	9.68	

[1] Karunratanakul et al. A skeleton-driven neural occupancy representation for articulated hands. In 3DV, 2021.

Generalizability test on RGB2Hands and EgoHands

 Top two rows show examples from RGB2Hands and bottom two rows show examples from EgoHands

Qualitative ablation study on InterHand2.6M

 I, R and K denotes Initial Hand Occupancy Network, Two-Hand Occupancy Refinement Network, and Input Keypoint Refinement Network, respectively.

Project Website & Code

https://jyunlee.github.io/projects/implicit-two-hands

Weakly-supervised Domain Adaptation via GAN and Mesh Model for Estimating 3D Hand Poses Interacting Objects (CVPR20 oral, best paper finalist)

Seungryul Baek Imperial College London

Kwang In Kim

Tae-Kyun Kim KAIST

Imperial College London

Objective

Hand pose estimation for Hand-only scenario.

Objective

Hand pose estimation for Hand-only scenario.

Hand pose estimation from single RGB images under hand object interaction (HOI) scenario.

Most previous works tackle the HOI problem by collecting a **new dataset**.

Dexter+Object (ECCV'16)

EgoDexter (ICCV'17)

[Real dataset – Few in quantity, inaccurate/insufficient 3D annotation]

Most previous works tackle the HOI problem by collecting a **new dataset**.

Dexter+Object (ECCV'16)

Obman (CVPR'19)

EgoDexter (ICCV'17)

SynthHands (ICCV'17)

[Real dataset]

[Synthetic dataset – gap to real dataset]

Most previous works tackle the HOI problem by collecting a **new dataset**.

Dexter+Object (ECCV'16)

Obman (CVPR'19)

FPHA (CVPR'18)

EgoDexter (ICCV'17)

SynthHands (ICCV'17)

GANerated (CVPR'18)

[Real dataset]

[Synthetic dataset]

[Using GAN/Sensors – Still limited]

Most previous works tackle the HOI problem by collecting a **new dataset**.

Dexter+Object (ECCV'16)

Obman (CVPR'19)

FPHA (CVPR'18)

HO3D (ArXiv'19)

EgoDexter (ICCV'17)

SynthHands (ICCV'17)

GANerated (CVPR'18)

FreiHand (ICCV'19)

[Real dataset]

[Synthetic dataset]

[Using GAN/Sensors]

[Iterative 3D model fitting – #sample]

Challenges

STB (ICIP'17)

RHD (ICCV'17)

[Real and synthetic Hand-only data]

[Diverse objects]

Challenges

STB (ICIP'17)

RHD (ICCV'17)

[Real and synthetic Hand-only data]

[Diverse objects]

HO3D (ArXiv'19) Real, <15000 frame, 6 objects.

FreiHand (ICCV'19) Real, <3000 frame, <30 objects.

Key Idea

Image-level supervision with HOI images:

We exploit only easily available Real and synthetic hand-only data, Real HOI images with segmentation masks, Synthetic hand-only and HOI image pairs.

Key Idea

Image-level supervision with HOI images:

3D supervision with Hand-only data:

We exploit only easily available Real and synthetic hand-only data, Real HOI images with segmentation masks, Synthetic hand-only and HOI image pairs.

We gradually synthesize hand-only images using Mesh model and GAN with a weak image-level supervision.

Key Idea

We gradually synthesize hand-only images using Mesh model and GAN with a weak image-level supervision.

Key Idea

We gradually synthesize hand-only images using Mesh model and GAN with a weak image-level supervision.

Then, we learn the hand mesh estimation using the translated images.

Finally, we obtain the skeletons from the mesh.

- We obtained state-of-the-art performance, with our weakly supervised approach in challenging HOI datasets (DO, ED).
- We maintained the state-of-the-art performance in hand-only dataset (STB).

Hand-Object Interaction examples (Input/Init. Mesh/GAN output/2nd Mesh).

Hand-only examples (Input/Init. Mesh/GAN output/2nd Mesh).

