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Introduction

➢ 3D Morphable Models (3DMMs): models for registered 
3D meshes of an object class, like face, body and hand

➢ Deep 3DMMs apply graph convolutional network (GCN) 
on meshes. A hierarchical mesh autoencoder is used to 
obtain the latent embeddings.



https://dfaust.is.tue.mpg.de/ Malik et al. DeepHPS, 3DV 2018https://coma.is.tue.mpg.de/

Goal: learning latent embeddings for registered meshes of 
an object class

Registered meshes: 3D meshes sharing the same topology of the template mesh



https://dfaust.is.tue.mpg.de/ Malik et al. DeepHPS, 3DV 2018https://coma.is.tue.mpg.de/

Goal: learning latent embeddings for registered meshes of 
an object class

Autoencoder for learning latent embeddings of general objects

encoder decoder



In the literature, the hierarchy is built by mesh decimation by 
minimizing surface error before and after decimation, and can 
be represented by mapping matrices across neighboring levels.
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Autoencoding registered meshes
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Related works on mesh autoencoder:
Ranjan et al. Proc. ECCV 2018

Bouritsas et al. Proc. ICCV 2019

Tretschk et al. Proc. ECCV 2020

Zhou et al. Proc. NeurIPS 2020
Ranjan et al. Proc. ECCV 2018
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mapping matrices are optimized 
for decimation in terms of 
surface error, but applied for 
feature aggregation

mapping 

matrix



We propose to learn the mapping matrices end-to-end. 
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Attention based feature aggregation
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• over-parameterization
• mesh autoencoder: ~30K

• mapping matrices: >6M
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Attention based feature aggregation
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Method

➢ We propose an attention module to generate the 
mapping matrices, which allows to learn the mapping 
matrices end-to-end and use trainable keys and queries 
to compute the mapping matrices. 

➢ By utilizing key and query, we can avoid over-
parameterization of mapping matrix and exploit the non-
local relationship between mesh vertices. 



Method
• In Deep 3D Morphable Models, feature aggregation can be 

generally formulated as

• Feature aggregation via attention: 



Method
• Given the key and query vectors, the compatibility function 

measures how well two vertices at neighboring levels align: 

• Binary mask for the weight score: 

• The fusion can be thought as a multi-head attention with a fixed 
head and a learnable head: 



Method

• We initialize the first three dimensions of the key and query vectors 
by the spatial position of vertices at the corresponding level. The 
remaining dimensions are randomly initialized by an uniform 
distribution.



Experiments
➢ We conduct experiments on human faces, bodies, and 

hands.
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Mesh reconstruction

statistical reconstruction errors for different latent dimensions: 8, 16, 32, 64
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Comparisons to existing aggregation methods.
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COMA (Ranjan et al. 2018)



Visualization of mapping matrices:

Receptive fields
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Interpolation in latent space

source target targetsourceinterpolation interpolation



Deformation transfer with arithmetic 
operations on latent representations



Conclusion

➢ We propose to learn feature aggregation for deep 3DMMs.
➢ Our attention based feature aggregation uses trainable keys and 

queries to compute the mapping matrices, such that the matrices 
can be optimized by the target objective and used as a train stage 
only drop-in replacement for either down-sampling or up-sampling.

➢ Experimental results show the learned aggregation can enhance the 
capacity of deep 3DMMs with isotropic or anisotropic convolutions.

➢ Code: https://github.com/zxchen110/Deep3DMM

• [1] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black. Generating 3D faces using 
convolutional mesh autoencoders, ECCV 2018.



Sequential Graph Convolutional Network 
for Active Learning



Motivation

• Active Learning (AL) – a critical area of research in data-hungry deep learning 
networks for vision applications and much more.

• The annotation process for large-scale datasets is time-
consuming, expensive, needs experts, and most-times noisy. Active Learning 
overcomes this by reducing the labelled set while maintaining the most 
meaningful examples.

• New model-based AL approaches exploit the correlation between the labelled 
and the unlabelled images while inheriting the learner's uncertainty.



Recent works

Model-base Active Learning:

• Learning Loss(CVPR 2019) introduces a separate loss-prediction module to be trained 
together with the learner.

• VAAL(ICCV 2019) trains a variational auto-encoder (VAE) that learns a latent space for 
better discrimination between labelled and unlabelled images in an adversarial 
manner.

• Both lack of a mechanism that exploits the correlation between the labelled and 
unlabelled images

=> Graph Convolutional Networks(GCNs) are capable of sharing information 
between the nodes via message-passing operations



Proposed pipeline

➢ Phase I implements the learner. 
This is a model trained to 
minimize the objective of the 
downstream task. 

➢ Phase II, III and IV compose our 
sampler where we deploy the 
GCN and apply the sampling 
techniques on graph-induced 
node embeddings and their 
confidence scores. 

➢ Phase V, the selected unlabelled
examples are sent for annotation. 

Sampler



Methods - Learner

• Initially, the learner is trained with a small number of seed labelled 
examples. We extract the features of both labelled and unlabelled
images from the learner parameters.

• Classification: We took ResNet-18 as the CNN model. The objective 
of our classifier is cross entropy: 

• Regression: To tackle the 3D HPE, we deploy DeepPrior [26] 
architecture. J is the number of joints of hand pose: 



Methods - Sampler

• A pool-based scenario for active learning:

We aim to minimise the number n of active learning stages so that 
fewer samples (x, y) would require annotation.

• During Phase II, we construct a graph where features are used to 
initialise the nodes of the graph and similarities represent the edges. 

• The features extracted from the learner creates an opportunity to 
inherit uncertainties to the sampler.



Methods - Graph Convolutional Network

• This graph is passed through GCN layers (Phase III) and the 
parameters of the graph are learned to identify the nodes of 
labelled vs unlabelled examples. We convolve on the graph which 
does message-passing operations between the nodes to induce the 
higher-order representations.

• To avoid over-smoothing of the features in GCN [18], we adopt a 
two-layer architecture.

• The loss for GCN: 



• The graph embedding of any image depends primarily upon the 
initial representation and the associated neighbourhood nodes.

• Thus, the images bearing similar semantic and neighbourhood
structure end up inducing close representations which will play a 
key role in identifying the sufficiently different unlabelled examples 
from the labelled ones. 

• The nodes after convolutions are classified as labelled or unlabelled. 



Methods

Uncertainty sampling on GCN

• While querying a fixed number of b points for a new subset, we apply the 
following equation:

• For selecting the most uncertain unlabelled samples, margin should be closer 
to 0.

CoreSet sampling on GCN

• To integrate geometric information between the labelled and unlabelled

graph representation, we approach a CoreSet technique [31]:

where δ is the Euclidean distance.



UncertainGCN – representative simulation



Experiments

• In the experiment section, we compare several baselines on image 
classification and 3D hand pose estimation datasets. Because these 
benchmarks are fully labelled, we can empirically evaluate under 
different budget and labelled/unlabelled subset settings (more 
details in the main paper). 

• We achieve state-of-the-art testing performance in challenging 
applications. 



Image Classification Quantitative comparison



Qualitative exploration

First Active learning selection cycle

Fourth Active learning selection cycle

UncertainGCN
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Other datasets: ICVL 3D Hand Pose Estimation –
RaFD Face Expression augmented data

ICVL 3D Hand Pose Estimation Dataset RaFD - StarGAN Face Synthetic Dataset



Ablation studies



Image classification – special scenarios

CIFAR-10 imbalanced classes scenario CIFAR-10 VGG-11 learner scenario



Image examples at the last Active Learning 
selection cycle
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Things to take home:
• A novel methodology of active learning in image classification and 

regression using Graph Convolutional Network.

• Our sampling techniques, UncertainGCN and CoreGCN, produced state-of-

the-art results on 6 benchmarks and in limited scenarios.

• These methods maximise informativeness within the data space while 

allowing integration into other learning tasks.


