
When is it safe to free memory
in concurrent programming?

An opinionated survey of memory reclamation algorithms

Jeehoon Kang
(A joint work with Jaehwang Jung)

2020-11-26
KAIST Software Graduate Program

20

Concurrent Data Structures (CDS)

0 10

free() free()

+ fast & non-blocking

- complex design
- …

- memory management

T1: remove(0) T2: remove(20)

unsafe

⊥

unsafe

2

||
(in parallel)

Memory Reclamation in CDS:

You Are Not Free to free() the Removed Block

3

2010

T1

0

use-after-free

Solution: Safe Memory Reclamation (SMR) Algorithms

T2: remove(0)
T2: free(b)

Zzz..

Q2: When is it safe to free(b)?

Q1: How do I protect b
from being free()’ed?

b

The SMR Algorithms Literature

4

Epoch-Based
Reclamation

Hazard
Pointers

Dice et. al.

Hazard Eras

Interval-Based
Reclamation

Hyaline

DEBRA+

ThreadScan

Dragojević et. al.

StackTrack

Snowflake

QSense

Optimistic Access

Free Access

Drop the Anchor

SMR Algorithm #1

Hazard Pointers (HP)

A1: protect(b) (called hazards)

A2: When it is no longer protect()’ed.

0 10head

Occasionally called to trigger free()

T3: collect()

b

T1: protect(b)

T2: retire(b)

T2: remove(0)

T3: free(b)

unprotect(b)

20

defer free(b) until it’s safe - = ∅- = {b}

Q2: When is it safe to free(b)?

Q1: How do I protect b from
being free()’ed?

5

HP’s Example

HP-Protected Treiber’s Stack

6

protect(cur);
if (this->head.load() != cur)

continue;

unprotect(cur);

retire(cur);

unsafe

HP's Drawbacks

Not Fast & Not Widely Applicable

7

Not fast: requires per-protect() synchronization with expensive store-load fence

0 10 20

Not widely Applicable: doesn't support “chained retirement”

0 10 20

protect(b0)

collect()

hazards

b0
collect()

protect(b1) protect(b2) store-load fence

b0 b1 b2

hazards

b1

hazards

b2

T2: free(b1)
b0 b1 b2

T2: remove([0, 10])

T2: retire(b0); retire(b1)

T1: protect(b0)
Unsafe protect()!

× (length of the list)

T1: protect(b1)

- = {b1}

SMR Algorithm #2

Epoch-Based Reclamation (EBR)

0 10 20

b0 b1 b2

collect()

store-load fence

T2: remove([0, 10])

T2: retire(b0); retire(b1)

× 1

Fast: synchronization
for each active state

Widely applicable: Protection for all potential accesses

- = ∅

Q2: When is it safe to free(b)?

Q1: How do I protect b from
being free()’ed? A1: set_active() for blanket protection

A2: When b can’t be accessed by any active threads.

How to decide?

- = {b1, b2}

free(b0) free(b1)

8

Epoch Consensus

9

e

e+1 e+2

e+3

e+1

remove(b); retire(b)@e

T4: collect()@e+3

threads in overlapping
active state cannot

reference b

T1

T2

T3

T4

Epoch consensus rule
Concurrent epochs may

differ by at most 1

set_active() set_quiescent()

epoch of the
active state

inside an active state

Q2: When is it safe to free(b)? A2: At epoch e+3

cannot reference bcan reference b

can reference b

; free(b)

EBR’s Example

EBR-Protected Treiber’s Stack

10

set_active();

set_quiescent();

retire(cur);
unsafe

EBR's Drawback: Not Robust

11

e

e+1

e+2

e+1

retire(b)@e

If a thread doesn’t exit its active state, reclamation is indefinitely blocked.

e+2

e+2

e+2

e+2

cannot reclaim b
retired at e

T1

T2

T3

T4

SMR Algorithms Literature

12

Epoch-Based
Reclamation

Hazard
Pointers

Dice et. al.

Hazard Eras

Interval-Based
Reclamation

Hyaline

DEBRA+

ThreadScan

Dragojević et. al.

StackTrack

Snowflake

QSense

Optimistic Access

Free Access

Drop the Anchor

Slow

Not robust

Not self-contained

Not compact

Not widely
applicable

Metadata for all
allocated blocks

Userspace allocator,
signal handler,

hardware transactional memory,
page fault handler,

OS scheduler control, ...

Pointer-and-Epoch-Based Reclamation

13

PEBR
(PLDI 2020)

kaist-cp/pebr-benchmark

Fast

Robust

Self-contained

Compact

Widely applicable

1. Hybrid of EBR and HP using
ejection.

2. Widely applicable API even in
the presence of ejection

3. Robust, self-contained and
ejection algorithm

https://github.com/kaist-cp/pebr-benchmark

Making EBR Robust with Ejection

14

e

e+1

e+1

retire(b)@e

e+2 e+2

e+2e+4

cannot reclaim b
retired at e

T1

T2

T3

e+3

Ejected

Eject T3 from the epoch consensus!

Notices ejection and
starts recovery procedure.

PEBR in a Nutshell

15

e

e+1

e+1

retire(b)@e

e+2

T1

T2

T3

e+3

Ejected

T2: collect()@e+3

referencing b

free(b)?

Further protect() fails when ejected

(ejection notification)

protect(b)

Q2: When is it safe to free(b)?

Q1: How do I protect b from
being free()’ed?

A1: protect(b) inside an active state.

If failed, then you're ejected.

A2: At epoch e+3, if isn’t not protect()’ed.

protect(b1)

SMR Algorithms Literature: Ejection

16

Epoch-Based
Reclamation

Hazard
Pointers

Dice et. al.

Hazard Eras

Interval-Based
Reclamation

Hyaline

ThreadScan

Dragojević et. al.

StackTrack
QSense

Optimistic Access

Free Access

Slow

Not robust

Not self-contained

Not compact

Not widely
applicable

EBR that ejects
non-cooperative threads

• Uses
for ejection

• Only supports linked lists

• Not applicable to most CDS’s

due to strict safety requirements
• Uses lock & page fault handler

for ejection

Uses signal for ejection

DEBRA+
Snowflake

Drop the Anchor

Pointer-and-Epoch-Based Reclamation

17

1. Hybrid of EBR and HP using
ejection.

2. Widely applicable API even in
the presence of ejection

3. Robust, self-contained and
ejection algorithm

PEBR
(PLDI 2020)

kaist-cp/pebr-benchmark

Fast

Robust

Self-contained

Compact

Widely applicable

https://github.com/kaist-cp/pebr-benchmark

Wide Applicability by Ejection Notification

0head 10 20

b0 b1 b2

T2:collect()

free(b1)

T1: remove([0, 10])

T1: retire(b0); retire(b1)

protect(b0)
protect(b1)

Ejected @e+3

@e
- = {b1}

@e

HP doesn’t support
“chained retirement”.

PEBR prevents unsafe protect() with ejection notification.

- = {b1}

Ejection detected.
Start recovery!Unsafe protect()!

Safety Requirement:
When ejected, don’t start traversal from the previously protected blocks.

18

Wide Applicability in Practice

Safety Requirement:
When ejected, don’t start traversal from the previously protected blocks.

19

0head 10 20

b0 b1 b2
free(b1)

T1: remove([0, 10])

T1: retire(b0); retire(b1)@e

protect(b0)

Ejected

protect(b1) fails

(1) protect() before each dereference

Ejection detected!
(2) Restart the operation from head!

Example: Porting EBR-based data structure to PEBR

Pointer-and-Epoch-Based Reclamation

20

1. Hybrid of EBR and HP using
ejection.

2. Widely applicable API even in
the presence of ejection

3. Robust, self-contained and
ejection algorithm

PEBR
(PLDI 2020)

kaist-cp/pebr-benchmark

Fast

Robust

Self-contained

Compact

Widely applicable

https://github.com/kaist-cp/pebr-benchmark

PEBR is Fast and Robust

21

Throughput Peak Memory Usage

Effect of thread
oversubscription on EBR

PEBR

EBR

Effect of a non-cooperative
thread on EBR

PEBR

Effect of stalled thread on EBR

thread oversubscriptionthread oversubscription

(On machine with 96 hardware threads)

No Reclamation

• Full algorithm

• Safety proof

• Full benchmark results

• Rust API that statically enforces
some safety requirements

22

What Else Is in the Paper?

PEBR
(PLDI 2020)

kaist-cp/pebr-benchmark

Fast

Robust

Self-contained

Compact

Widely applicable

https://github.com/kaist-cp/pebr-benchmark

