2020-11-26
KAIST Software Graduate Program

When is it safe to free memory
in concurrent programming?

An opinionated survey of memory reclamation algorithms

Jeehoon Kang
(A joint work with Jaehwang Jung)

I(AI ST Korea Advanced Institute of
: Science andTechnology

Concurrent Data Structures (CDS)

e

free()
1 0)10 /4 20 | + fast & non-blocking
- complex design
T1: remove(0) | | T2: remove(20) oo
(in parallel)

- memory management

Memory Reclamation in CDS:
You Are Not Free to free() the Removed Block

Q1: How do I protect b

T UEEEIESIEE from being free()’ed?

‘ b
T2: free(b)
T2: remove(@) Q2: When is it safe to free(b)?

Solution: Safe Memory Reclamation (SMR) Algorithms

3

The SMR Algorithms Literature

Hazard
Pointers

Dice et. al.

Optimistic Access

Free Access

Dragojevic et. al.

StackTrack

Hazard Eras

Interval-Based
Reclamation

Hyaline

Drop the Anchor

ThreadScan

Epoch-Based
Reclamation

Snowflake

DEBRA+

QSense

SMR Algorithm #1

Hazard Pointers (HP)

Occasionally called to trigger f
T1l: protect(b) unprotect(b)

10 s 20 T3: collect()

T2: retire(b)_,
13: free(b) defer free(b) until it’s safe

T2: remove(0)

Q1: How do I protect b from
being free()’ed? Al: protect(b) (called hazards)
Q2: When is it safe to free(b)? iAZ: When it is no longer protect()’ed.} :

HP’'s Example

HP-Protected Treiber’s Stack

1 struct Node<T> { Node<T>* next; T data; };

2 struct Stack<T> {

3 Atomic<Node<T>*> head; // nullptr, initially
4 void push(T data) {

5 auto node = new Node<T>{nullptr, data};

6 do {

7 auto cur = this->head.load();

8 node->next = cur;

9 } while (!this->head.cas(cur, node));

10 }

11 optional<T> Stack<T>::pop() { protect(cur);

2 auto cur = nullptrs if (this->head.load() != cur)
13 oop . !

14 cur = this->head.load(); contlnue,

15 if (cur == nullptr) re# ;

TS > auto next = cur->next; .
17 if (this->head.cas(cur, nex UﬂpFOtGCt(CUF),
18 ; ; // unsafe reclamation

20 }

21 return std: :move(cur->data);

22 }

HP's Drawbacks

Not Fast & Not Widely Applicable

Not fast: requires per-protect() synchronization with expensive store-load fence

___’_0@:_.. 1@ . 20@ ijm c collect()

bo I b1 I b2 I
protect(bo) protect(bl) protect(b2) [store-loadﬁax(length of the list)

Not widely Applicable: doesn't support “chained retirement”
T2: retire(b@); retire(bl)

Unsafe protect()!

T2: remove([9, 10])

SMR Algorithm #2

Epoch-Based Reclamation (EBR)

Fast: synchronization Widely applicable: Protection for all potential accesses
for each active state
[stor‘e load@ T1l: —set—activel} set queiscent()
T2: retire(b@); retire(bl)

collect() /', O

=1 }]
: remove([0, 10]

Q1: How do I protect b from
being free()’ed? Al: set_active() fo How to decide?
Q2: When is it safe to free(b)? ﬁAZ: When b can’t be accessed by any active thl;;eads]

Epoch Consensus

inside an active state

set_active() eti set _quiescent()

T1 -

epoch of the
active state

Epoch consensus rule
Concurrent epochs may
differ by at most 1

can reference b B cannot reference b

threads in overlapping
active state cannot
reference b

T4: collect()@e+3; free(b)

Q2: When is it safe to free(b)? i A2: At epoch e+3 }
9

EBR’s Example

EBR-Protected Treiber’s Stack

1 struct Node<T> { Node<T>* next; T data; };

2 struct Stack<T> {

3 Atomic<Node<T>*> head; // nullptr, initially

4 void push(T data) {

5 auto node = new Node<T>{nullptr, data};

6 do {

7 auto cur = this->head.load();

8 node->next = cur;

9 } while (!this->head.cas(cur, node));

10 }

11 optional<T> Stack<T>::pop() {

12 auto cur = nullptr; set aCtive();
13 loop { =

14 cur = this->head.load();

15 if (cur == nullptr) return {3};

TS > auto next = cur->next;

17 if (this->head.cas(cur

18 ; ; // unsafe reclamation

19 }

20 } - .
21 return std::move(cur->data); set_qwescent(),
22 }

EBR's Drawback: Not Robust

[If a thread doesn't exit its active state, reclamation is indefinitely blocked.]

retire(b)@e
I T e o e S P iaE L 4 Ponnnaneeees
el i ; e ; e+2
T2 - * P--ooooommneeseeeooo oo . oo ¢ P
e+1 e+2 e+2
L ’
e+1 W 4
TR : : cannot reclaim b
T4 bt S S P > retired at e
b ret2 ‘ e+2 .

11

SMR Algorithms Literature

Epoch-Based

[Not widely | Reclamation
applicabld”
Metadata for all Hazard Eras
0 allocated blocks Interval-Based [Not robust]
\. | Reclamation
Not compact Hyaline
4 Y
Optimistic Access User.space allocator,
signal handler,
Free Access hardware transactional memory,
page fault handler,

OS scheduler control, ...
Dragojevic et. al S \,/_) e o

\ Sl Al ThreadScan Not self-contained

QSense

Pointer-and-Epoch-Based Reclamation

[Fast]

PEBR

Compact

(PLDI 2020)

O kaist-cp/pebr-benchmark

. Hybrid of EBR and HP using

ejection.

. Widely applicable API even in

the presence of ejection

. Robust, self-contained and

compact ejection algorithm

13

https://github.com/kaist-cp/pebr-benchmark

Making EBR Robust with Ejection

Notices ejection and
starts recovery procedure.

cannot reclaimb
retired at e

14

PEBR in a Nutshell

(ejection notification)

Q1: How do I protect b from Al: protect(b) inside an active state.
being free()’ed? If failed, then you're ejected.
Q2: When is it safe to free(b)? iAZ: At epoch e+3, if isn't not protect()’ed.} .

Further protect() fails when ejected}

SMR Algorithms Literature: Ejection

Slow Hazard N / N
Pointers (~ Epoch-Based
« Uses per-block metadata Reclamation
for ejection
 Only supports linkecd lists
Dice et. al. R clamatlo /

~ [Not compact M\\
[EBR that ejects
non-cooperative threads Drop the Anchor
k =
| |

f- Not applicable to most CDS’s
due to strict safety requirements
 Uses lock & page fault handler

\ for ejection
B —

Uses signal for ejection

|
Snowflake DEBRA+

Pointer-and-Epoch-Based Reclamation

[Fast]

PEBR

Compact

(PLDI 2020)

O kaist-cp/pebr-benchmark

. Hybrid of EBR and HP using

ejection.

. Widely applicable API even in

the presence of ejection

. Robust, self-contained and

compact ejection algorithm

17

https://github.com/kaist-cp/pebr-benchmark

Wide Applicability by Ejection Notification

[PEBR prevents unsafe protect() with ejection notification.]

“chained retirement”.

VH v”’
10 i
i s=siezs

HP doesn’t support }

T1l: remove([0Q, 10])

Safety Requirement:
When ejected, don't start traversal from the previously protected blocks.

Wide Applicability in Practice

[Example: Porting EBR-based data structure to PEBR]

L e— #
T1l: retire(b@); retire(bl)@e
~ ﬁ !

réct(bl) failsﬁ{(z)

Ejection detected!
Restart the operation from head!

N

(1) protect() before each dereference

[Safety RecL)

When ejected, don't start traversal from the

previously protected bIogks.J

Pointer-and-Epoch-Based Reclamation

1. Hybrid of EBR and HP using

ejection.
[Fast] P E B R SIERES 2. Widely applicable API even in
the presence of ejection
(PLDI 2020) 3. Robust, self-contained and
O kaist-cp/pebr-benchmark compact ejection algorithm

20

https://github.com/kaist-cp/pebr-benchmark

PEBR is Fast and Robust

Throughput Peak Memory Usage

thread oversubscription H thread oversubscription
ashMap

HashMap o

2001 Effect of thread
) ' oversubscription on EBR .
150- [No Reclamation] SMR, interf.
\ i - NR
[Effect of stalled thread on EBR / < EBR
; #
1004 < EBR oo, | Effect of a non-cooperative |/ +EBR, 10ms
PEBR thread on EBR i * EBR, stalled
- PEBR
504 50, PEDY S 4 +PEBR, 10ms
preadnd
P4 I AU == PEBR, stalled
.’.".’ /"/
0- 0] FTE -0t =4
1 8 16 24 32 40 48 56 64 72 80 88 96 104112120 1 8 16 24 32 40 48 56 64 72 80 88 96 104112
Threads Threads
PEBR
21

(On machine with 96 hardware threads)

What Else Is in the Paper?

 Full algorithm
[Fast] Compact

P E B R « Safety proof

e Full benchmark results

(PLDI 2020) « Rust API that statically enforces

some safety requirements

O kaist-cp/pebr-benchmark

22

https://github.com/kaist-cp/pebr-benchmark

