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Concurrent Data Structures (CDS)

e

free()
1 0 )10 /4 20 | + fast & non-blocking
- complex design
T1: remove(0) | | T2: remove(20) oo
(in parallel)

- memory management



Memory Reclamation in CDS:
You Are Not Free to free() the Removed Block

Q1: How do I protect b

T UEEEIESIEE from being free()’ed?

‘ b
T2: free(b)
T2: remove(@) Q2: When is it safe to free(b)?

Solution: Safe Memory Reclamation (SMR) Algorithms
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SMR Algorithm #1

Hazard Pointers (HP)

Occasionally called to trigger f
T1l: protect(b) unprotect(b)

10 s 20 T3: collect()

T2: retire(b)_,
13: free(b) defer free(b) until it’s safe

T2: remove(0)

Q1: How do I protect b from
being free()’ed? Al: protect(b) (called hazards)
Q2: When is it safe to free(b)? iAZ: When it is no longer protect()’ed.} :




HP’'s Example

HP-Protected Treiber’s Stack

1 struct Node<T> { Node<T>* next; T data; };

2 struct Stack<T> {

3 Atomic<Node<T>*> head; // nullptr, initially
4 void push(T data) {

5 auto node = new Node<T>{nullptr, data};

6 do {

7 auto cur = this->head.load();

8 node->next = cur;

9 } while (!this->head.cas(cur, node));

10 }

11 optional<T> Stack<T>::pop() { protect(cur);

2 auto cur = nullptrs if (this->head.load() != cur)
13 oop . !

14 cur = this->head.load(); contlnue,

15 if (cur == nullptr) re# ;

TS > auto next = cur->next; .
17 if (this->head.cas(cur, nex UﬂpFOtGCt(CUF),
18 ; ; // unsafe reclamation

20 }

21 return std: :move(cur->data);

22 }



HP's Drawbacks

Not Fast & Not Widely Applicable

Not fast: requires per-protect() synchronization with expensive store-load fence

___’_0@:_.. 1@ . 20@ ijm c collect()

bo I b1 I b2 I
protect(bo) protect(bl) protect(b2) [ store-loadﬁax(length of the list)

Not widely Applicable: doesn't support “chained retirement”
T2: retire(b@); retire(bl)

Unsafe protect()!

T2: remove([9, 10])



SMR Algorithm #2

Epoch-Based Reclamation (EBR)

Fast: synchronization Widely applicable: Protection for all potential accesses
for each active state
[stor‘e load@ T1l: —set—activel} set queiscent()
T2: retire(b@); retire(bl)

collect() /', O

=1 }]
: remove([0, 10]

Q1: How do I protect b from
being free()’ed? Al: set_active() fo How to decide?
Q2: When is it safe to free(b)? ﬁAZ: When b can’t be accessed by any active thl;;eads]




Epoch Consensus

inside an active state

set_active() eti set _quiescent()

T1 -

epoch of the
active state

Epoch consensus rule
Concurrent epochs may
differ by at most 1

can reference b B cannot reference b

threads in overlapping
active state cannot
reference b

T4: collect()@e+3; free(b)

Q2: When is it safe to free(b)? i A2: At epoch e+3 }
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EBR’s Example

EBR-Protected Treiber’s Stack

1 struct Node<T> { Node<T>* next; T data; };

2 struct Stack<T> {

3 Atomic<Node<T>*> head; // nullptr, initially

4 void push(T data) {

5 auto node = new Node<T>{nullptr, data};

6 do {

7 auto cur = this->head.load();

8 node->next = cur;

9 } while (!this->head.cas(cur, node));

10 }

11 optional<T> Stack<T>::pop() {

12 auto cur = nullptr; set aCtive();
13 loop { =

14 cur = this->head.load();

15 if (cur == nullptr) return {3};

TS > auto next = cur->next;

17 if (this->head.cas(cur

18 ; ; // unsafe reclamation

19 }

20 } - .
21 return std::move(cur->data); set_qwescent(),
22 }



EBR's Drawback: Not Robust

[If a thread doesn't exit its active state, reclamation is indefinitely blocked. ]

retire(b)@e
I T e o e S P iaE L 4 Ponnnaneeees
el i ; e ; e+2
T2 - * P--ooooommneeseeeooo oo . oo ¢ P
e+1 e+2 e+2
L ’
e+1 W 4
TR : : cannot reclaim b
T4 bt S S P > retired at e
b ret2 ‘ e+2 .
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SMR Algorithms Literature

Epoch-Based

[ Not widely | Reclamation
applicabld”
Metadata for all Hazard Eras
0 allocated blocks Interval-Based [ Not robust ]
\. | Reclamation
Not compact Hyaline
4 Y
Optimistic Access User.space allocator,
signal handler,
Free Access hardware transactional memory,
page fault handler,

OS scheduler control, ...
Dragojevic et. al S \,/_) e o

\ Sl Al ThreadScan Not self-contained

QSense




Pointer-and-Epoch-Based Reclamation

[ Fast ]

PEBR

Compact

(PLDI 2020)

O kaist-cp/pebr-benchmark

. Hybrid of EBR and HP using

ejection.

. Widely applicable API even in

the presence of ejection

. Robust, self-contained and

compact ejection algorithm
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https://github.com/kaist-cp/pebr-benchmark

Making EBR Robust with Ejection

Notices ejection and
starts recovery procedure.

cannot reclaimb
retired at e

14



PEBR in a Nutshell

(ejection notification)

Q1: How do I protect b from Al: protect(b) inside an active state.
being free()’ed? If failed, then you're ejected.
Q2: When is it safe to free(b)? iAZ: At epoch e+3, if isn't not protect()’ed.} .

Further protect() fails when ejected}




SMR Algorithms Literature: Ejection

Slow Hazard N / N
Pointers ( ~ Epoch-Based
« Uses per-block metadata Reclamation
for ejection
 Only supports linkecd lists
Dice et. al. R clamatlo /

~ [ Not compact M\\
[ EBR that ejects
non-cooperative threads Drop the Anchor
k =
| |

f- Not applicable to most CDS’s
due to strict safety requirements
 Uses lock & page fault handler

\ for ejection
B —

Uses signal for ejection

|
Snowflake DEBRA+




Pointer-and-Epoch-Based Reclamation

[ Fast ]

PEBR

Compact

(PLDI 2020)

O kaist-cp/pebr-benchmark

. Hybrid of EBR and HP using

ejection.

. Widely applicable API even in

the presence of ejection

. Robust, self-contained and

compact ejection algorithm
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https://github.com/kaist-cp/pebr-benchmark

Wide Applicability by Ejection Notification

[ PEBR prevents unsafe protect() with ejection notification. ]

“chained retirement”.

VH v”’
10 i
i s=siezs

HP doesn’t support }

T1l: remove([0Q, 10])

Safety Requirement:
When ejected, don't start traversal from the previously protected blocks.




Wide Applicability in Practice

[ Example: Porting EBR-based data structure to PEBR ]

L e— #
T1l: retire(b@); retire(bl)@e
~ ﬁ !

réct(bl) failsﬁ{(z)

Ejection detected!
Restart the operation from head!

N

(1) protect() before each dereference

[Safety RecL )

When ejected, don't start traversal from the

previously protected bIogks.J




Pointer-and-Epoch-Based Reclamation

1. Hybrid of EBR and HP using

ejection.
[ Fast ] P E B R SIERES 2. Widely applicable API even in
the presence of ejection
(PLDI 2020) 3. Robust, self-contained and
O kaist-cp/pebr-benchmark compact ejection algorithm
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https://github.com/kaist-cp/pebr-benchmark

PEBR is Fast and Robust

Throughput Peak Memory Usage

thread oversubscription H thread oversubscription
ashMap

HashMap o

2001 Effect of thread
) ' oversubscription on EBR .
150- [No Reclamation ] SMR, interf.
\ i - NR
[ Effect of stalled thread on EBR / < EBR
; #
1004 < EBR oo, | Effect of a non-cooperative |/ +EBR, 10ms
PEBR thread on EBR i * EBR, stalled
- PEBR
504 50, PEDY S 4 +PEBR, 10ms
preadnd
P4 I AU == PEBR, stalled
.’.".’ /"/
0- 0] FTE -0t =4
1 8 16 24 32 40 48 56 64 72 80 88 96 104112120 1 8 16 24 32 40 48 56 64 72 80 88 96 104112
Threads Threads
PEBR
21

(On machine with 96 hardware threads)



What Else Is in the Paper?

 Full algorithm
[ Fast ] Compact

P E B R « Safety proof

e Full benchmark results

(PLDI 2020) « Rust API that statically enforces

some safety requirements

O kaist-cp/pebr-benchmark
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https://github.com/kaist-cp/pebr-benchmark

