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3D Pose Estimation (hand or body)
Input Depth Image Skeleton

Extract joint angles

for current frame

Rendered depth

Challenges:

• High degree of freedom (d=26)

• Viewpoint changes and self occlusions

• Fast movement

• Annotation difficulty

• Shape variation

2T-K Kim, ICL, https://labicvl.github.io/



Dense Pose Estimation

• HANDS19 Challenge @ ICCV includes: Hand-object interaction, depth and colour 
modalities, extrapolation capabilities, the use of synthetic data (MANO). 

• Fitted mesh models to BigHand2.2M, F-PHAB, HO-3D datasets, are provided.  
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Interaction with AR/VR environment

[Oculus]

[Upload VR]

[Leap Motion]

[NANSENSE]
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[MSR]

[Oculus]

[Upload VR]

More examples: AR/VR in autonomous cars 

Driver-vehicle interaction

[UCSD]
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Our methods deliver state-of-the-art performance:

- Autonomous unfolding clothes (ICRA14, best 

paper award): regression RF, probabilistic 

active planning

- Latent Hough Forest (ECCV14) : template-

matching splitting, one-class learning

- Active Forest (ECCV14) : multi-task learning, 

next-best view in RF

- Object pose in the crowd (CVPR16) : deep f

eatures, next-best-view

6D Object Pose and Active Vision

Problem: Estimating objects’ 3D location and 
pose

Application: E.g. picking and placing for logistics

Sponsored by:



Physical interactions and robotics

[Spread][SynTouch]

Robot-human interaction 7

[OpenAI]

[ICL & Samsung Research]



3D Facial Landmarking and Image Generation

Progressive GANS (Karras et al, ICLR18)



Challenges

9T-K Kim, ICL, https://labicvl.github.io/



Challenges
• A training dataset that spans all data variations is hard to obtain: 

• The data space needs to be densely covered: 
• Depth images change a lot by slight hand pose variation due to self-occlusions etc.

[Viewpoint]                          [Shape]                           [Articulation]



→ Still, lacking in combination of viewpoint/shape/articulation.

Real vs synthetic data collection

[Yuan et al. CVPR’17]

Big Hand 2.2M: Use of sensors/inverse 

kinematics.

Real 

Data

[Tang et al. CVPR’14, Tompson et al. TOG’14, Sun et al. CVPR’15]

ICVL, NYU, MSRA: Use of tracking & refinement.



Big Hand 2.2M: Use of sensors/inverse 

kinematics.

→ Still, lacking in combination of viewpoint/shape/articulation.

Real vs synthetic data collection

[Yuan et al. CVPR’17]

Real 

Data

[Tang et al. CVPR’14, Tompson et al. TOG’14, Sun et al. CVPR’15]

ICVL, NYU, MSRA: Use of tracking & refinement.

Synt. 

Data

[Shrivastava et al. CVPR’17]

Reduce the gap between synthetic and real data.
[Sharp et al. CHI’15]

Data collection by using a synthetic 3D model.

→ Synthetic-real data discrepancy 

→ No interaction between the data generator and hand pose estimator.



BigHand2.2M benchmark CVPR17 [used by 
116 unique institutions, 491 downloads]

T-K Kim, ICL, https://labicvl.github.io/ 13

t-SNE embedding. BigHand2.2M (blue), ICVL (red), and NYU (green). 

global view point (left), articulation space in 25D (right)



Data augmentation

14T-K Kim, ICL, https://labicvl.github.io/



GAN Architecture
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─ GAN composes of two networks: the generator and the discriminator.



GAN Training (Discriminator)
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back-propogate error to update 

discriminator weights

The training process of the “Discriminator Network”. Error is back-propagated over 

the discriminator network only, in order to update discriminator weights, while the 

Generator Network is locked.



GAN Training (Generator)
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generator 

network

discriminator 

network

𝒛

real 

world 
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𝐷(𝐺(𝒛)), fake

sample

The training process of the “Generator Network”. Error is back-propagated over the 

generator network only, in order to update generator weights, while the 

Discriminator Network is locked.



Generative Models
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─ Generative Adversarial Networks (GANs) are example of generative models.

─ Generative models take a training set (samples drawn from a data-generating

distribution 𝑝𝑑𝑎𝑡𝑎), and learn to represent an estimate of that distribution. The

result is a probability distribution 𝑝𝑚𝑜𝑑𝑒𝑙.

─ In some cases, the model estimates 𝑝𝑚𝑜𝑑𝑒𝑙 explicitly. Generative model

performing density estimation takes training data, which are of an unknown

data-generating distribution 𝑝𝑑𝑎𝑡𝑎, and return an estimate of that distribution.

The estimate 𝑝𝑚𝑜𝑑𝑒𝑙 can be evaluated for a particular value of 𝒙 to obtain an

estimate 𝑝𝑚𝑜𝑑𝑒𝑙(𝒙) of the true density 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙 :



Generative Models
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─ In other cases, the model is only able to generate samples from 𝑝𝑚𝑜𝑑𝑒𝑙. Some

generative models are able to generate samples from the model distribution

𝑝𝑚𝑜𝑑𝑒𝑙. Ideally, a generative model would be able to train on examples (left), and

then create more examples from the same distribution (right):

training examples model samples



Weakly-supervised Domain Adaptation via GAN and Mesh Model for 

Estimating 3D Hand Poses Interacting Objects

Seungryul

Baek

Kwang In

Kim

Tae-Kyun

Kim

(CVPR20 oral, best paper finalist)



Objective

Hand pose estimation for Hand-only scenario.



Objective

Hand pose estimation from single RGB images under hand object interaction (HOI) scenario.

Hand pose estimation for Hand-only scenario.



Related works

Most previous works tackle the HOI problem by collecting a new dataset. 

[Real dataset – Few in quantity, inaccurate/insufficient 3D annotation]

Dexter+Object (ECCV’16)

EgoDexter (ICCV’17)



Related works

Most previous works tackle the HOI problem by collecting a new dataset. 

[Synthetic dataset – gap to real dataset]

Obman (CVPR’19)

SynthHands (ICCV’17)

Dexter+Object (ECCV’16)

EgoDexter (ICCV’17)

[Real dataset]



Related works

Most previous works tackle the HOI problem by collecting a new dataset. 

Obman (CVPR’19)

SynthHands (ICCV’17)

Dexter+Object (ECCV’16)

EgoDexter (ICCV’17)

FPHA (CVPR’18)

GANerated (CVPR’18)

[Synthetic dataset][Real dataset] [Using GAN/Sensors – Still limited]



Related works

Most previous works tackle the HOI problem by collecting a new dataset. 

Obman (CVPR’19)

FreiHand (ICCV’19)

HO3D (ArXiv’19)

SynthHands (ICCV’17)

Dexter+Object (ECCV’16)

EgoDexter (ICCV’17)

FPHA (CVPR’18)

GANerated (CVPR’18)

[Synthetic dataset][Real dataset] [Using GAN/Sensors] [Iterative 3D model fitting – #sample]



Challenges

[Real and synthetic Hand-only data]

[Diverse objects]

STB (ICIP’17)

RHD (ICCV’17)



Challenges

[Real and synthetic Hand-only data]

[Diverse objects]

STB (ICIP’17)

RHD (ICCV’17) FreiHand (ICCV’19)

Real, <3000 frame, <30 objects.

HO3D (ArXiv’19)

Real, <15000 frame, 6 objects.



Key Idea

We exploit only easily available Real and synthetic hand-only data, Real HOI images with segmentation masks, Synthetic hand-only and HOI image 

pairs.

Image-level supervision with HOI images:

Real HOI Synthetic HOI



Key Idea

We exploit only easily available Real and synthetic hand-only data, Real HOI images with segmentation masks, Synthetic hand-only and HOI image 

pairs.

Image-level supervision with HOI images:

Real HOI Synthetic HOI

3D supervision with Hand-only data:

Real Hand-only Synthetic Hand-only



Key Idea

We gradually synthesize hand-only images using Mesh model and GAN with a weak image-level supervision.



Key Idea

We gradually synthesize hand-only images using Mesh model and GAN with a weak image-level supervision.



Key Idea

We gradually synthesize hand-only images using Mesh model and GAN with a weak image-level supervision.



Key Idea

Then, we learn the hand mesh estimation using the translated images.



Key Idea

Finally, we obtain the skeletons from the mesh.
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Results

- We obtained state-of-the-art performance, with our weakly supervised approach in challenging HOI datasets (DO, ED).

- We maintained the state-of-the-art performance in hand-only dataset (STB).



Results

Hand-Object Interaction examples (Input/Init. Mesh/GAN output/2nd Mesh).

Hand-only examples (Input/Init. Mesh/GAN output/2nd Mesh).



Results



Results



Results



RGB-based Dense 3D Hand Pose via Neural Rendering 
CVPR19
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Dense hand poses

Learning 3D shapes by weak supervision via neural renderer
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(CVPR18 oral)

Augmented Skeleton Space Transfer
for Depth-based Hand Pose Estimation

Seungryul

Baek

Kwang In

Kim

Tae-Kyun

Kim



Directly augmenting depth images is difficult

→ Rotating a 2.5D depth map in 3D results in missing pixels.

→ Non-trivial is to change hand shapes (long-slim/fat, small/big etc).

[Original depth map]
3D rotation



Data augmentation in skeleton space
• Generate data with unseen shapes/viewpoints from paired data.

[Paired data P={x,y}]

,
,      : Rotation angles

: Ratio of bone-lengths.

[Augmented skeleton U={z}]

10x

Viewpoint/articulation

Viewpoint

BigHand, ICVL, NYU, MSRA, Ours



Augmented skeleton space transfer to depth
• Joint learning of 4 networks (HPE, HPG, HPDx, HPDy) to transfer augmented skeletons to 

depth images.

[Augmented skeleton U={z}] [Synthesized depth 

image]

HPG



Joint Learning of HPG/HPE/HPD

HPE

HPG

• HPE and HPG are trained by paired 

data P={x, y}.



Joint Learning of HPG/HPE/HPD

HPDx HPDy

HPE

HPG

• Adversarial loss is added.



Joint Learning of HPG/HPE/HPD

HPG

HPDx HPDy

HPE

HPG

• Cyclic consistency on x. 



Joint Learning of HPG/HPE/HPD

HPG

HPDx HPDy

HPE

HPEHPG

• Cyclic consistency on y. 



Joint Learning of HPG/HPE/HPD

HPDx HPDy

HPEHPG

• Cyclic consistency for unpaired data 

U={z}.



Joint Learning of HPG/HPE/HPD

HPDx HPDy

HPEHPG HPG

• Cyclic consistency for unpaired data 

U={z}.



Joint Learning of HPG/HPE/HPD

HPG

HPDXx HPDY

HPE

HPEHPG HPG

• Final loss:



Inference with augmented skeletons

• Initial hand pose estimationHPE



Inference with augmented skeletons

• The estimated pose is further

refined by the gradients from both 

HPG and HPD_Y.

HPE HPG

HPDY



Inference with augmented skeletons

HPE

Viewpoint

augmentation

HPG

HPDY

• Ensembling refinement: 
1) The estimated skeleton is 

randomly rotated.

2) We receive gradients from 

multiple views by HPD_Y

3) Then, we average them to the 

final result with the updates from 

HPG.



Transferred depth maps

T-K Kim, ICL, 

https://labicvl.github.io/
66

• HPG generates different shapes.

HPG Output

Nearest DB 

Sample



Transferred depth maps

T-K Kim, ICL, 

https://labicvl.github.io/
67

Elevation Change Azimuth Change

Nearest DB Sample Nearest DB Sample

Nearest DB Sample
Nearest DB Sample



Experiments
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BigHand 2.2M ICVL

MSRA NYU



Experiments

• HPG also improves its accuracy by seeing more data.

• Conventional augmentation (In-plane-rotation) is orthogonal to ours.

• We also augment 5x, 10x, 20x; 10x is the best considering time/accuracy.
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Hand Pose Estimator (HPE): Hand Pose Generator (HPG):

Depth Discriminator (HPD_X): Skeleton Discriminator (HPD_Y):

• Implemented with 

the Torch library, on 

an Intel 3.40 GHz i7 

machine with two 

NVIDIA GTX 1070 

GPUs. 

• Training: 3-4 days 

(100 epochs) on 10x 

augmentation.

• Testing: 300 FPS 

using the GPU

Also tried ResNet for 

HPE. 

Network architecture and computation





Inducing Optimal Attributes

Representations for Conditional GANs
Binod Bhattarai1, Tae-Kyun (T-K) Kim1,2

1. Imperial College London, UK

2. KAIST, Daegeon, South Korea



Introduction

• Face attribute manipulation is an active 
research problem

• Labelled conditional GANs e.g. Stargan 
(CVPR'18,), Attgan (TIP'19), 
STGAN(CVPR'19) are successfully 
applied

• Encode target attributes in one-hot 
vector form

• Hand-engineered, no semantic 
information of attributes is embedded



Semantic 
Representations of 
attributes

• STGAN (CVPR’19a) proposed to condition t-s instead t, its proven 
effective to improve attribute generation rate and other qualitative 
metrics

• Explored different conditioning mechanism:  one-hot vector 
representation, semantic representations such as Word2Vec, Attrbs-
weights

• These representations do not explicitly encode the co-occurences 
of the attributes

One-hot Vector (ICASSP’ 

2020)

Word2Vec  (ICASSP’ 2020) Attrbs-weights  (CVPRW’18)

Nose

Mouth

Eyes

Head



Conditioning both on 
generator and on discriminator

• Identified the issue of unnatural 
translation of target attributes due to 
lack of mechanism to retain the 
associated attributes of the target one  

•Proposed to condition associated 
attributes (e.g. gender, race) in 
addition to main attribute (aging) 
both on Generator and on 
Discriminator  to faithfully retain even 
after translation

• Hand-engineered, difficult to scale 
to arbitrary attributes manipulation

Attribute Aware Age Progression (CVPR’19b)



Key Idea

• Propose novel method to induce 
higher-order semantic 
representations of target 
attributes

• Estimated co-occurrence 
probabilities from the training 
example and construct co-
occurrence matrix

• Conditioning on both Generator 
and on Discriminator part



Graph Convolutional 
Network to induce higher 
order representation 

•Apply GCN framework similar to Kipf et al [ICLR’17]

•Each node of the Graph represents attribute 
specific information 

•Edges encode relation between the attributes 
defined in adjacency matrix which we derive from 
the co-occurrence matrix

•Thickness of the edges indicate the probabilities of 
co-existing 

•Apply Convolution operation to induce the higher 
order representations and feed to the generator



Multi-task learning on 
Discriminator 

• Applied multi-task learning similar to Cavallanti 
et al [JMLR’10] on discriminator

• Main idea: if prediction on any attribute is 
wrong,  update the model parameters of not 
only that attribute but also the related 
attributes

• Relations is derived from co-occurrence matrix 
as before

• Rate of update is determined by the 
magnitude of relation

• Satisfying such constraints induces similar 
model representations of related attributes  



Proposed pipeline

• Upper part is regular cGAN

• Apply Graph Convolutional Network 
(GCN) on Generator part

• Do element wise multiplication 
between induced representations from 
graph by the difference of target and 
source one-hot vector similar to 
STGAN (CVPR’19a)

• (Multi-task Learning) MTL on 
discriminator part



Empirical evaluations

• Baseline architecture: Stargan
• Data set : CelebA
• TARR (Target Attributes Recognition Rate): Trained a classifier on real training examples and test on 

synthetic examples
• Evaluated on 5 attributes: Black, Blonde, Brown hair, Gender, Age
• Semantic attributes (word2vec and attrbs-weights) reprs. perform better



Quantitative Evaluations on CelebA



Evaluations on LFWA

• Blue Bar: Baseline, Green Bar: Our 
Approach

• Consistently outperforming the 
counter-part method



Qualitative 
Comparisons



Qualitative Comparisons

Female

Female

Attgan, IEEE TIP 2019

Ours 

Beard not thinned 

yet

Beard is thinned,

Arched eyebrows, 

lipsticks



Qualitative Comparisons

A young guy turning 

complete bald=> 

unnatural and rare ?

A wrinkled face, old 

guy, few remaining 

few grey hairs and 

turning bald 

Bald

Bald

STGAN (CVPR 2019)

Ours 



Qualitative Results

• Main attribute: Bald, Associated 
attributes: wrinkles on face, 
few remaining grey hairs

• Main attribute: Old, Associated 
attributes: Wrinkles, Receding 
Hairlines, Grey hairs



Conclusions and Future Works

• We propose a framework to induce higher-order representations of 
target label for conditional GAN 

• We applied Graph Convolutional Network on Generator side 
whereas multi-task learning on Discriminator  

• Empirical  evaluation demonstrates the improvement in the 
accuracy of the proposed method compared to the existing arts

• Qualitative evaluations shows natural translation

• In future, we explore the method to learn the edge information of 
the graph  to synthesise naturally translated images 
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Sampling Strategies for GAN Synthetic Data

Binod Bhattarai, Seungryul Baek, Rumesya Bodur, Tae-Kyun Kim 
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Introduction

❖ Uneven distribution of annotated examples.

❖ Some categories even lack sufficient annotated examples.

❖ Data augmentation has been crucial for the success of deep learning framework [a] 

❖ Geometric transformations of an image cropping, flipping, rotation, shearing  are commonly used to 

generate new annotated examples.

❖ Recently, GANs synthetic are being used to augment the real data set

Fig. Distribution of annotated    

examples on AffectNet

Sad                 Fear            Surprise            Happy 

[a] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks."NeurIPS. 

2012.



Motivation: Issues with Geometric Transformation
❖ [a] identified the issue with applying a common set of  geometric 

transformation to every classes
➢ Rotational invariance is poorly suited while dealing with certain classes such as 

6 or 9 in MNIST.

❖ AutoAugment [b] proposed to learn the class specific geometric 
transformation using RL to sub-sample from large pool of  
geometrically transformed synthetic image.

❖ Our work is focused in sub-sampling GAN synthetic data 
❖ Advantages of GAN synthetic data: i) Images from different categories 

can be translated to a target category ii) Geometric Transformation can 
be applied 

[a] Hauberg, Søren, et al. "Dreaming more data: Class-dependent distributions over diffeomorphisms for learned data 

augmentation." Artificial Intelligence and Statistics. 2016.

[b] Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation strategies from data." CVPR 2019



Motivation: Issues in GAN synthetic examples 

❖ Generates photorealistic synthetic examples.
❖ Randomly augmenting synthetic examples with real data [a,b] for face 

analysis task is getting popular.
❖ Not examined yet if all synthetic examples are equally important. 

a. Gecer, B., Bhattarai, B., Kittler, J., & Kim, T. K.. Semi-supervised adversarial learning to generate photorealistic face images of new identities from 3D 

morphable model.  ECCV, 2018

b. Zhao, Jian, et al. "Dual-agent gans for photorealistic and identity preserving profile face synthesis." NIPS 2017



Motivation: Distribution of target label confidence 
score on synthetic examples of Affectnet

❖ Computed target label confidence score on synthetic data  
❖ Order of target label is: Contempt, Disgust, Fear
❖ Large fraction of synthetic data preserve label with very low confidence



Proposed method: 3 data sampling methods.

❏ Three different data 

sampling strategies based 

on 1) target class confidence 

score (cl-sam), 2) confidence 

on realism (cr-sam) and 3) 

reinforcement learning (RL)

❏ Evaluated independently to 

compare their impact



Confidence score based sampler (cl-sam)

❖ Use Discriminator of the GAN to predict class label 
❖ Ranked synthetic examples based on target class label confidence
❖ top-K ranked examples used to train the classifier



Realism score based sampler (cr-sam)

❖ Use Discriminator of the GAN to predict the real vs fake score
❖ Ranked synthetic examples based on realism confidence
❖ top-K ranked examples used to train the classifier.



RL-based Sampler

❖ RL : Trained an Actor-Critic RL framework to learn the policy to predict 
whether to augment a synthetic example or not given synthetic image

❖ Parameters were learned to maximise the reward
❖ Reward is computed from the validation score from the child network



Experiments 
❖ Data sets: CelebA (Attributes) and Affectnet (Expression)
❖ Evaluation metric: Mean Accuracy
❖ Compared methods:

■ Random Augmentation: Most common augmentation technique
■ cr-sam : Data sampled based on confidence on realism
■ cl-sam: Data sampled based on confidence on target class label
■ RL : An agent trained to predict augment/not augment given synthetic example

❖ Synthetic image generator: StarGAN
■ Can be applied with any other GANs



Quantitative Results on Affectnet

❖ 88K of training examples 
❖ Augmented by different size of synthetic  data
❖ Consistently outperforms the baseline 
❖ RL sub-sampled synthetic data of size 2.6X of real data from the pool of 7X



Quantitative Results on CelebA

❖ A popular benchmark with 160K training examples
❖ Our approach further improved the performance of the commonly 

used technique



Experiments (Qualitative)

❖ Sampled synthetic images are closer to real images.
❖ Discarded images look quite different in terms of illumination and 

have more artifacts.



Conclusions

❖ We evaluated three different sampling strategies over commonly 
used augmentation techniques. We propose to use confidence score, 
realism score and RL based sampler to find a meaningful subset. 

❖ From our extensive experiments, we observed that these three 
techniques outperform the commonly used random augmentation 
technique.

❖ Among these three, we observed that the class conditional and 
realism based methods are both efficient and accurate, RL is accurate 
but computationally expensive



Semi-supervised Adversarial Learning to Generate 
Photorealistic Face Images of New Identities from 3DMM 
ECCV18

• Randomly generated 3DMM images with random 
pose, expression and lighting attributes for the new 
IDs.

• Unsupervised training with forward cycle 
consistency.

• Adversarial Pair Matching network G’ by the help of 
a limited number of paired data. 

• ID preservation by a set-based supervision through 
a pretrained classification network C.

103T-K Kim, ICL, https://labicvl.github.io/



Identity Preservation

• While the quality of images is being improved during the training, 

• Their projection on the embedding space is shifting. 

• Centre/pushing losses is used to adapt to those changes

➢ Quality of 9 images of 3 identities (per row) during the training. Background plot shows the error by the proposed identity preservation layer 

over the iterations. Notice the changes on the level of fine-details on the faces which is the main motivation of using set-based identity 

preservation.
104T-K Kim, ICL, https://labicvl.github.io/



GANF
aces

➢ Random samples from GANFaces dataset. Each row belongs to same identity. Notice the variation in 

pose, expression and lighting.



Quantitative Results / Less Real Data

• Contribution of GANFaces is more visible when a percentage of real data is 
used

106T-K Kim, ICL, https://labicvl.github.io/
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Problem Statement
Problem : 

● Most of the current pose estimation system consists of a sequence of 
separate, independent component : object detection, pose estimation 
and refinement.

● The performance drops largely when the environment is crowded and 
cluttered as the training dataset does not contain occlusion.

Idea :

● Build a network that jointly performs object detection, 6D object pose 
estimation, and joint registration.

● Synthetic images are generated with physics simulation to capture the 
realistic occlusion pattern for training.



Related work
● Most previous works considers relation between object candidate hypothesis at testing stage only(e.g. NMS for detection 

network), and the training of their pose estimators is agnostic to such occlusion behaviors: They are trained on isolated 

object instances.

● Previous works either performs different components separately or use approximation to infer 6D parameters based on 

assumption that there is no occlusion.

○ SSD6D estimate 3d translation indirectly from bounding box. Only works when tight bounding box is recovered 

from isolated unoccluded objects.

○ BB8[2] performs detection and pose estimation separately.

Sample image of training data from SSD6D[1]

[1] SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again, Kehl et al., ICCV’17

[2] BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of Challenging Objects without Using Depth

Sample image of training data from BB8[2]



Training data generation

View-point 

sampling

http://drive.google.com/file/d/12gSBeJr4FIidjv3F8p-_QCSDuSjiecfY/view


Training data generation



Training data generation



Framework
● Modular design

○ There are 3 modules responsible for 3 different tasks required for estimating pose of multiple objects:

■ Object bounding box detection

■ Object pose estimation

■ Joint registration

○ Proposed system optimizes the following loss function:

L = LDet + LO + LD + LP + LJ



Framework

● LDet : Region Proposal Network(RPN) detects objects and regresses bounding boxes around detected 

object.

● LO  : 2D object center estimation(x,y) regresses the offset between the object center and the bounding box 

corner estimated from RPN.

● LP(D)  : Under severe occlusion, regressing a single reliable pose estimate is challenging. Both 3D pose(roll, 

pitch, yaw) and depth(z) are formulated as classification which allows us to sample multiple hypotheses.

● LJ : 6D pose estimation module generates a pool of hypotheses which contains multiple false positives. 

Joint registration classifies each hypothesis into false positive or true positive.



Detection



Framework

● LDet : Region Proposal Network(RPN) detects objects and regresses bounding boxes around detected 

object.

● LO  : 2D object center estimation(x,y) regresses the offset between the object center and the bounding box 

corner estimated from RPN.

● LP(D)  : Under severe occlusion, regressing a single reliable pose estimate is challenging. Both 3D pose(roll, 

pitch, yaw) and depth(z) are formulated as classification which allows us to sample multiple hypotheses.

● LJ : 6D pose estimation module generates a pool of hypotheses which contains multiple false positives. 

Joint registration classifies each hypothesis into false positive or true positive.



Pose estimation

● Figure above visualises pose classes.

● Unlike regression, classification can provide multiple pose hypothesis.



Framework

● LDet : Region Proposal Network(RPN) detects objects and regresses bounding boxes around detected 

object.

● LO  : 2D object center estimation(x,y) regresses the offset between the object center and the bounding box 

corner estimated from RPN.

● LP(D)  : Under severe occlusion, regressing a single reliable pose estimate is challenging. Both 3D pose(roll, 

pitch, yaw) and depth(z) are formulated as classification which allows us to sample multiple hypotheses.

● LJ : 6D pose estimation module generates a pool of hypotheses which contains multiple false positives. 

Joint registration classifies each hypothesis into false positive or true positive.



Joint registration
● Inspired by GossipNet[1] architecture which models and learn relational feature 

between hypotheses.

● Cast selection problem as classification problem as in [2].

[1] Learning non-maximum suppression, Hosang et al., CVPR’17

[2] A Global Hypotheses Verification Method for 3D Object Recognition, Aldoma et al., ECCV’12



Experiments



Experiments
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Summary

● A model can jointly learn multiple tasks without harming the performance: detection, 3D 

localisation, orientation estimation and joint registration.

● A pipeline to generate synthetic dataset with varying level of occlusion is proposed.
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IK

Hand pose input Mapping function Hand model



This is often not enough to interact with the world:

• Rich contact physics.

• High jitter noise from hand pose estimator.

• Kinematics and domain gap.



Related work: hand poses and manipulations in VR

Höll et al., VR 2018. Kim and Park, ICRA 2015.

Tzionas et al., IJCV 2016. Hasson et al., CVPR 2019.



Source: https://www.youtube.com/watch?v=6MivRLfbKYs

Related work: hand poses and manipulations in VR
Leap Motion Interaction Engine

Source: https://www.youtube.com/watch?v=J0KhC1GpLSQ

Oculus Quest (Hand Physics Lab)



Related work: vision-based teleoperation

Handa et al., ICRA 2020.Antotsiou et al., ECCV W 2018. Li et al., ICRA 2019.



Related work: dexterous manipulations and RL/IL

OpenAI, IJRR 2020.

Rajeswaran et al., RSS 2018.

Peng et al., SIGGRAPH Asia 2018.



We propose a Residual Hand Agent to correct this imperfect user input:

IK
Residual Hand Agent 

Residual Hand Agent: Overview 



Noisy user input Residual Hand Agent



Residual Hand Agent Physics simulator

Residual action

HPE

Visual features

User input

Residual Hand Agent: Task Reward

Source: Rajeswaran et al., 2018.

IK



Residual Hand Agent Physics simulator

Residual action

HPE

Visual features

User input

Expert trajectories

Agent   trajectories

Mocap dataset
Rajeswaran et al., 2018.

Discriminator

Residual Hand Agent: IL Reward

Source: www.mujoco.org

IK

http://www.mujoco.org/


Residual Hand Agent Physics simulator

Residual action

HPE

Visual features

User input

Expert trajectories

Agent   trajectories

Mocap dataset
Rajeswaran et al., 2018.

Discriminator

Residual Hand Agent: Hand Pose Reward

IK



Residual Hand Agent Physics simulator

Residual action

HPE

Visual features

User input

Expert trajectories

Agent   trajectories

Mocap dataset
Rajeswaran et al., 2018.

Discriminator

BigHand2.2M, 
Yuan et al., 2017. 

Estimated hand pose
data generation

IK

Residual Hand Agent: Data Generation



A. Performing dexterous manipulations in the virtual space with 

estimated hand poses in mid-air.

B. Physics-based hand-object sequence reconstruction.

Experiments



Experiment A: Overcoming random noise on demonstrations



Noisy user input Residual Hand Agent



Residual Hand Agent
Low level input noise

Residual Hand Agent
High level input noise



Experiment A: Comparison with baselines



Residual Hand AgentRL - no user reward



Residual Hand AgentHybrid (RL+IL) 
+ user reward 
– no residual

RL – no user reward



Experiment A: Overcoming structured hand pose estimation error



Baseline (IK) Residual Hand Agent

(Sequence generated with our 
data generation scheme)



Baseline (IK) Residual Hand Agent

(Sequence generated with our 
data generation scheme)



Experiment B: Physics-based hand-object sequence reconstruction.



Pour juice action: qualitative examples



Summary and future work

• Residual framework that can perform manipulation skills by 

simply using a hand pose estimator and a camera.

• We showed two different applications of our approach.

• Future work: end-to-end approach with 6D object pose estimation 

in the loop. The use of synthetic hand data generation can help.

• Future work: study of generalization to different tasks and 

environments.



Domain Transfer



G. Park, T-K Kim, and W. Woo, “3D Hand Pose Estimation with a Single Infrared Camera via Domain Transfer Learning”, ISMAR (2020)

Infrared camera

Fast-moving

hand

Frame#0 Frame#1

Motion blurMotion blur

depth

IR

Our result
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Comparison

[1] Oberweger et al., “DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation” (Hands17 Workshop)

[2] Chen et al., “Pose Guided Structured Region Ensemble Network for Cascaded Hand Pose Estimation” (Neurocomputing 2019) 

<Quantitative comparison> <Qualitative comparison>

Left bar:   Slow motion 

Right bar: Fast motion



Video
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