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My Current Research

* Image-to-image translation
* Automatic image colorization
* Data augmentation via generative adversarial networks

* Visual analytics for interpreting and interacting with
deep neural networks

* Interactive labeling techniques and systems
* Medical image recognition
* Machine reading comprehension

* Time-series prediction




Overview of This Talk

* Intro to conditional generative models [5 min]

* My own research on interactive automatic colorization [45 min]
* Colorization using natural language [ECCV’|8]
* Few-shot colorization via memory networks [CVPR’| 9]
* Reference-based sketch colorization using augmented self-exemplar [CVPR20]

* Other work on interactive generative models and future research
directions [10 min]




Definition of Generative Model

* Recognition vs. Generation (and Translation)

* Recognition: compresses a large number of input values into a small number of
output values

* Generation: expands a small number of input values into a large number of
output values.

* Translation: transforms a large number of input information into another large
number of output values.

 Conditional Generation: additional input is given, which steers the generation
processes in a user-driven manner.




Recognition Tasks @ Introduction &
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The discriminative model learns how to classify input to its class.



Generation Tasks @ Introduction &

Latent . Generative .
code Model
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The generative model learns the distribution of training data.



Translation Tasks @ Introduction &
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CONDITIONAL GENERATION (AND TRANSLATION)

* An additionally given input works as a condition that steers the
generation and translation processes in a user-driven manner.

e Two GAN-based models: CGAN and ACGAN




STARGAN: MULTI-DOMAIN IMAGE TRANSLATION

Input Blond hair Gender Aged Pale skin Input Angry Happy Fearful
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Motivations for Human-in-the-Loop Approach

* As we discussed earlier, unlike recognition tasks, generative models gives
the output composed of a large number of values.

* User intent are often too complex to describe as a simple categorical
variable.

-> Flexible, sophisticated forms of user inputs are necessary.

* Some among them may not be satisfactory to users nor aligned with user
intent.

-> Users should be able to partially edit the output in an iterative manner.

* Machine learning models should facilitate such editing processes by
properly propagating user inputs in the generation output.




Taxonomy of User Inputs (or Conditions) in Generative Models

* Global (male or female) vs. Local (strokes and scribbles)

 Reference-based vs. non-reference-based
* Reference image
b USGFS’ own VS. one among a pre-given set
e Strokes and scribbles

* Positive vs. negative clicks (segmentation)

* Particular colors (colorization)

* Interaction modality
* Text, voice,AR/VR,; ...




Strokes and Scribble User-Input

Interactive colorization demo page,
https://paintschainer.preferred.tech

N <, Tanpopo ms.alsuki {Aﬁ Canna ‘/ Colorize l


https://paintschainer.preferred.tech/index_en.html

(Potentially Interactive) Generation and Translation Tasks

* Computer Vision

* Image generation and translation

* Facial attribute transfer, pose transfer; ...

* Interactive instance segmentation for labeling
* Automatic colorization
* DeepFashion

* Video re-targeting

* Natural Language Generation
* Post-editing in NMT

* Controllable paraphrasing




Intro to Automatic Image Colorization

* Basically, it is an image-to-image translation task from a grayscale or
sketch image into a colorized one.

* Thus, adversarial learning via an additional discriminator, or simply GAN, is
usually adopted.

* Obviously, it has practical impact in content creation, e.g., animation
and cartoon.

* It can potentially be used as a general-purpose, self-supervised
learning task, which works as a pre-training method for other
downstream tasks.

* In general, this task is trained in a paired setting, but as will be seen in
the third work | will present, it is not always the case, making the task
challenging.




Colorization as Self-Supervised Learning

* Vondrick et al., Tracking Emerges by Colorizing Videos [ECCV’18]

* https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html



https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

pix2pix: Conditional GAN for Paired Image-to-Image Translation

* |sola et al., Image-to-Image Translation with Conditional Adversarial
Networks [CVPR’17]
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pix2pix: Conditional GAN for Paired Image-to-Image Translation

* |sola et al., Image-to-Image Translation with Conditional Adversarial
Networks [CVPR’17]

Training data
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Overview of This Talk

* Intro to conditional generative models

* My own research on interactive automatic colorization
* Colorization using natural language [ECCV’ 18]
* Few-shot colorization via memory networks [CVPR’| 9]
* Reference-based sketch colorization using augmented self-exemplar [CVPR20]

* Other work on interactive generative models and future research
directions




COLORING WITH WORDS:
GUIDING IMAGE COLORIZATION THROUGH

TEXT-BASED PALETTE GENERATION (ECCYV 2018)

Hyojin Bahng,* Seungjoo Yoo,* Wonwoong Cho,* David K.
Park, Ziming Wu, Xiaojuan Ma, and Jaegul Choo
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GOAL

Map text to colors
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MOTIVATION

Text can be mapped to multiple colors
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MOTIVATION
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MOTIVATION

TRUST - DEPENDABLE - STRENGTH
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MOTIVATION

¢ Catch hidden meaning in text

i love you how deep is your love i once loved you
| thought i loved you crazy in love our love is over

| think i love you where did our love go | love you forever

Fig. 14. Handling phrase-level inputs about ‘love’.




OVERVIEW OF TEXT2COLORS



OVERVIEW: HOW OUR MODEL WORKS

Input Text
‘mudslide’ —

Input Grayscale Image

Multlple Palette Generation Colorized Output

User selects palette

Original Image




PAT DATASET



WHY WE MADE OUR OWN DATASET

Important keywords in writing our research paper
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PAT DATASET

PAT dataset (5 color)
adjectives
frozen neon . . ﬂorfuh - . modest m
nouns and phrases stepping on mud

skin tones pe to strawberry hurt feelin%
o m EEETE Wi CeEEm

%l‘llje[}%'nmany mapplng (mummodamy smgle text — multiple palettes)

First dataset to address rich text and multimodality

First large-scale color dataset matched with words

:Kobavashi : Munroe

adjectives
cute

mterestini

dry

dreamy

blue

maienta

light yellow

salmon




PAT DATASET

Ocean Daze Taylor Heating Dynamic Spark Flower Pastel
Ghost Majesty Blue to Gray Purple Mist Preppy Pink and Green

Western grandeur Rajasthan Pastel sky wall 1995 light faded pastels

* Data is crawled from color-hex.com

* 4 annotators manually refined the data




PAT DATASET

Blue to Gray Purple Mist

_ Pastel sky wall 1985 light faded pastels

Data is crawled from color-hex.com

4 annotators manually refined the data e




PROPOSED METHOD



PROPOSED METHOD (OVERVIEW)

Two Conditional GANs

Palette-based Colorization Networks (PCN)
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PROPOSED METHOD (OVERVIEW)

Two Conditional GANs

Text-to-Palette Generation Networks (TPN)
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Palette-based Colorization Networks (PCN)

Maps text to color palette
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TEXT-TO-PALETTE GENERATION NETWORKS (TPN)

Generator Architecture

GRU Decoder with Attention

g
. e e, e, |6T|\ a 1111
e~N(0,1) Gl : J H—J e~N(0,I) - 4

Conditioning
Augmentation

GRU Encoder




TEXT-TO-PALETTE GENERATION NETWORKS (TPN)

Generator Architecture  “Seq2seq with Attention”

Sequential output
GRU Decoder with Attention

?I!l

Conditioning
Augmentation

YVt—2

GRU Encoder

Sequential input



TEXT-TO-PALETTE GENERATION NETWORKS (TPN)

Generator Architecture
Our Goal

Multiple Palette Generation

p—
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Conditioning

Augmentation
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User selects palette

GRU Encoder




TEXT-TO-PALETTE GENERATION NETWORKS (TPN)

Generator Architecture

Fixed encoder outputs h

Conditioning Sample conditional variable
Augmentation ‘ 1 e~N(u(h),2(h))

Adding randomness!
GRU Encoder




TEXT-TO-PALETTE GENERATION NETWORKS (TPN)

Generator Architecture

Fixed encoder outputs h

Conditioning Sample conditional variable
Augmentation ‘ ¢ =pu+ 0@ e~N(0,D

Adding randomness!
GRU Encoder




TEXT-TO-PALETTE GENERATION NETWORKS (TPN)

Generator Architecture

GRU Decoder with Attention

g
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TEXT-TO-PALETTE GENERATION NETWORKS (TPN)

Training the Discriminator

LDD — Eywpduta [log DU(E? y)] + Emwpdatu [log(l T DO (E? @))]
Real palette y Fake palette y
] B | 1 ] | I
D, | real D, — fake
Conditioning variable ¢ Conditioning variable ¢

[ ) - [ ) -




TEXT-TO-PALETTE GENERATION NETWORKS (TPN)

Training the Generator

Lay = Exnpy, l0g(1 — Do(€, 9))] + AaLu(9.y) +Ax L DL (N (u(h), X(h)) [| N(0, 1))

Fake palette y Fake palette y
EEEEE EEEER
> Do [~ Teal _, Smooth
Conditioning variable ¢ Real palette L, Loss
P y
[ J- HEB -




PROPOSED METHOD (OVERVIEW)

Two Conditional GANs

Palette-based Colorization Networks (PCN)
N

Text-to-Palette Generation Networks (TPN)
T e —— (==
= ]
Generator G IDiscriminator D, /J Generator G4 Discriminator Dy
GRU Decoder 1 1 ) (test) N )
L with Attention ) y
PR S B £ | R K
= —>
| Conditional Variable ¢ | 5 D, —fake fake
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Maps text to color palette Colors grayscale image using the palette




PALETTE-BASED COLORIZATION NETWORKS (PCN)

Generator Architecture (Training)

Ground-truth
Image

extract
palette

Grayscale Image | fF----------f------ s Colored Output

""" il

Generator (U-Net)




PALETTE-BASED COLORIZATION NETWORKS (PCN)

Generator Architecture (Training)

Ground-truth
Image

extract
palette

Provide “hint” from
the ground truth

Grayscale Image

Generator (U-Net)

Make the network depend
— on this information to
perform colorization

\

Becomes “controllable”
during test time!

Colored Output




PALETTE-BASED COLORIZATION NETWORKS (PCN)

Generator Architecture (Test time)

Generated palette Can inject any color
from TPN / palette we want to the

. . grayscale image
—L

Grayscale Image | fF----------f------ s Colored Output

Generator (U-Net)




PALETTE-BASED COLORIZATION NETWORKS (PCN)

Training the Discriminator

Pt

Lp, = Er~py.llog Di(p,I)] + E;_p [log(1 — Di(p, I))]

Ground-truth palette

Real image [

> real

Ground-truth palette

Fake image |

— fake




PALETTE-BASED COLORIZATION NETWORKS (PCN)

Training the Generator

Fa Fat

Lg, = EfwP(;l [1Og(1 - Dl(p:I))] + )\HLH(I:I)

Ground-truth palette

. - - ._ Real image [ Fake image [
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Fake image |

Smooth
L, Loss




TEXT2COLORS

| 1
! "
| 1
| 1
| 1
_ 4 i
“ 0 L
1 |
| | { 9
1 | “a
1 1 (S
1 1 "e
m | -
“ _ “V "e
! " _ 4
! | L QO
! “ O
1 1 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
\ 1
“
$=d
9
(]
(o
O
(]
s’
Q)
o
()
n ~\ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII N
& e N =)
| L] =
“ AP U - S
1 ﬁxm
| o I~
1 -~ O« “n
' X = fM\ .
1 O =
“ S )
1 W
| S
—_— i & e vmo%
() ! ¥
g - : ”
1 = )
£ | i o
1 0O
Q “
h “ 1Ah_Uu — R
) “ © u.q VM_..P:U.
i Q S
w = ¢ 8
O ! (
) i =
n “ 4
_Pu L\ y, AN Y,

TPN Generator

N e e e e e e = = = = = = = = = = e = = e e e e e e e e e e e e e = = = =



EXPERIMENTS



EXPERIMENTS: QUALITATIVE RESULTS

Text input Colorized Ground Text input Colorized Ground
Image Truth rainforest Image Truth
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EXPERIMENTS: QUALITATIVE RESULTS

i love you how deep is your love i once loved you
| thought i loved you crazy in love our love is over
| think i love you where did our love go | love you forever

Fig. 14. Handling phrase-level inputs about ‘love’.




EXPERIMENTS: QUALITATIVE RESULTS

mango and grapefruit

predicted palette

iround truth palette

death walks among you

iredlcted Tle e

ground

bright life

truth ialette

iredicted iene

ground truth palette

L it

lost hopes in a sea of sorrow swim

iredlctad palette iredicted ilette
iround truth ialette ground truth palette
unicorn explosion fear and misery
predicted palette predicted palette

ground truth iette

bu it down
predicted palette redrlgted%a 9

ground truth palette ground truth palette

ground truth palette

old coffee




EXPERIMENTS: QUALITATIVE RESULTS

Text input: Colorized Original Text input: Colorized  Original
Everyday robots  Images Images Party girls Images Images

Sweet grass




EXPERIMENTS: QUALITATIVE RESULTS

Text input: Colorized Original Text input: Colorized Original
Don’t talk to me Images Success
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EXPERIMENTS: ABLATION STUDY & ATTENTION MECHANISM

Text input: strawberry

chocolate cake Text input: plums and moons Text input: sunday afternoon
cGAN + Huber (15 = 100) cGAN + Huber (45 = 100) cGAN + Huber (45 = 100)
Huber (15 = 100) Huber (15 = 100) Huber (1, = 100)

cGAN cGAN cGAN

juicy

0.5




EXPERIMENTS: QUANTITATIVE COMPARISON

Palette Evaluation User Study: Part I
Model Variations Diversity = Multimodality Fooling Rate (%)
Objective Function CA Mean Std  Mean Std Mean Std Max Min
Ours (TPN) X 19.36 8.74 0.0 0.0 - - - -
Ours (TPN) O 20.82 7.43 0.43 8.11 56.2]12.7 76.7 37.1
Heer and Stone - 35.92 12.66 0.0 0.0 39.6 10.8 58.2 25.8
Ground truth palette - 32.60 21.84 - - - - - -
1 ey mours (PCN)
Q1: The palette is reflected in the colorization output. &
Q2: The palette colors are evenly used in the colorization process. ﬂ_'
Q3: Objects and backgrounds in the colorized image are A
distinguishable in colors. _328_'
Q4: | am satisfied with the quality of the colorized result. _'__|

241 3.08

Q5: If | am the painter, | would colorize similarly based on the palette. S




EXPERIMENTS: QUALITATIVE COMPARISON

Zhang Zhang
Input et al. 2017 et al. 2017 Ours
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FAILURE CASES

namibia buoy playground

kaboom

TTTTRITTTRLILT T

Fig. 16. Failed results of TPN. Our model fails and outputs the same washed-out
grayish-brown color palettes for unknown tokens.

calami




Overview of This Talk

* Intro to conditional generative models

* My own research on interactive automatic colorization
* Colorization using natural language [ECCV’| 8]
* Few-shot colorization via memory networks [CVPR’| 9]
* Reference-based sketch colorization using augmented self-exemplar [CVPR20]

* Other work on interactive generative models and future research
directions




COLORING WITH LIMITED DATA :

FEW-SHOT COLORIZATION VIA MEMORY-AUGMENTED NETWORKS
(CVPR 2019)

Seungjoo Yoo, Hyojin Bahng, Sunghyo Chung,
Junsoo Lee, Jaehyuk Chang, and Jaegul Choo



MOTIVATION

Data Scarcity

* Existing deep learning colorization models require a significant amount of
training data
* Data for animations and cartoons are often small in number
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MOTIVATION

Data Scarcity in cartoons and animations

Requires significant cost for creatlng animations

s

rorvoe — —
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By

naking of how to train your dragon 2

making of how to train your dragon 2

Black-and-White 3D modeling Colorization




MOTIVATION

Dominant Color Effect

* Deep colorization models tend to ignore diverse colors present in a training set and learn only
a few dominant colors.This can minimize overall loss, but has unsatisfactory results.

* This can minimize the overall loss, but has unsatisfactory results
Ground Truth




MOTIVATION

Dominant Color Effect

Real-world image
Ground Truth

Dominant color: brown, green

Cartoon
Ground Truth

Dominant color: yellow, blue




MODEL OVERVIEW

Our memory-augmented colorization model MemoPainter:
 Can color rare instances and suffers less from Dominant Color Effect

* Can be trained with very little data, even one-shot and few-shot
learning

* Introduce a novel Threshold Triplet Loss for unsupervised training of
memory networks.




MODEL ARCHITECTURE

Threshold Triplet Loss Memory Networks

PN Memory Update
Color Casel: KL(V[ni] l v) < 6 Loss =max(q-K[n,] —q-K[n;] + a,0)
Features Vin,] Vine] “ ml@ﬂﬁ q+K[n4]
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formatizedy, Query| q Vin] Update: K[n,] < g V[n,] «v A[n,] <0
FC
. —
ResNet
Colorization Networks

Generator

Input Image H
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Color Feature Parameters > .

@_, MLP | Q Input Image Discriminator Input Image Discriminator
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Color Feature Color Feature




MODEL ARCHITECTURE

Top-1

Color Feature

@—' MLP | )|

AdaIN
Parameters

)

Color
Features Vin4] 4
Spatial
Features K [n1] Kk [nk]
k-nearest neighbors
normalized Qu ell'y q
FC
|
ResNet l
4 Generator
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Input Image
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or feature from our

memory and give it as a condition to the trained generator




MODEL ARCHITECTURE

Memory Networks

Threshold Triplet L

reshold Triplet Loss Memory Update
Color Casel: KL(V[nq] Il v) < & Loss =max(q - K[np] — q - K[nq] + «,0)
Features Vin,] Viny] J]]1< >J]:D +K[ny]

Update: K[n,] < Lo A[n] < 0

Spatial Vini] v llg+K[n]l
Features Kln] " Kl

knearest nelghbors m u Case2: KL(V[ny] I v) > & Loss = max(q - K[n,] — q - K[n,] + «,0)

’,W{» Query q Ving] Update: K[n,] « q V[n,] «v A[n,] <0

FC

* Stores three different types of information: key memory, value
memory, and age.
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* Key: spatial features
* Value: color features

* Age:age of memory slot @




MODEL ARCHITECTURE

Color features

L

Color dist

/& /
W

Top 10 dominant RGB colors (taken from color thief)

* We leverage two variants to represent color information stored in
value memory:

* Color distributions: color distributions over 313 quantized color values
* RGB color values: set of ten dominant RGB color values of an image

V = Cyist or CraB.




MODEL ARCHITECTURE

+

Threshold Triplet L
reshold Triplet Loss emory Update
Color Casel: KL(V[nq] Il v) < & Loss =max(q - K[np] — q - K[nq] + «,0)
Features Vin,] Vingl < >J]]1 +K[ny]
Update: K[n,] < Lo A[n] < 0

Spatial (4] llg+K[n]l
Features Kln] " Kny]

3 k- néarest neigh’bors, : m I Case2: KL(V[ny] I v) > & Loss = max(q - K[n,] — q - K[n,] + «,0)

lized

2| formacizedy, Query| q Ving] Update: K[n,] « q V[n,] «v A[n,] <0
pd FC
= |

. |

Memory Networks

* Query computation
q=WXyps5+b, qg= ",

g
gl

* Nearest-neighbor computation

NN(g, M

(ﬂl, .

) = argmax; q - K [i],
'?nk} = NK—‘E(Q! MJ!




THRESHOLD TRIPLET LOSS

* Goal of triplet loss: making those images of a specific class closer to
each other (positive neighbors) than it is to images of any other class
(negative neighbors).

1

|

Example label: Girl, restaurant, blue clothes, yellow hair Blue background, two people, talking

* Class label information is not available in most data for colorization

tasks.
@




THRESHOLD TRIPLET LOSS

L L

* We assume that given two images, if they have similar spatial
features and the distance between their color distribution are
within a certain threshold, they are likely to be in the same class.

Positive neighbor Negative neighbor
KL(V([n,] || v) < . KL(V[n)] || v) > 6.

Threshold Triplet Loss

Li(q, M, ) = max(q- K[np] —q- K[ny] + a,0). @




Memory Update

Our memory M is updated after a new query q is introduced to the network.

(i) If the distance between V[n:] and v is within the color threshold, we update the key by
averaging K[n:] and g and normalizing it. Age is also reset to zero.

KL(V[n,] || v) < 6. King] 9+ K]

. ., Alni| + 0.
Ta+ K A

(ii) If the distance between V[n.] and v exceeds color threshold &8, this indicates that there

exists no memory slot available in our current memory that matches v. Thus, (g, V) will
be newly written into the memory.

KL(V[ny] || v) > 4. Kn,| < q,V|n,| < vy, Aln,| < 0.
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Model architecture

Colorization networks
ReSNeU Colorization Networks

4 Generator
' - . "
Output Image

Input Image

Ground Truth AdalN
Color Feature Parameters

@_, MLP _+ﬁ Input Image Discriminator Input Image Discriminator

Color Feature Color Feature

 (Conditional GAN

Lp=E;.p,, |logD(z,C,y)) « Smooth L1 Loss
TLz~Fyata [{1 - IQEE(I: C, G{I1 C}}}]:

s(y—9)* for |y—g|<?é
Loa(yg)=42Y "9 7" y
(#:9) {:5 ly — §| — 56° otherwise.
Lg=FE;.p,.  [(1-1logD(z,C,G(z,C)))]

+L3Ll{y: G{I:C}}



Colorization networks

Colorization networks

ResNet . L
[ Reshet | Colorization Networks
Generator

\ \

\,,'.. \,,‘.'

- -

Input Image Output Image Real Image

v 4

, !g X —
Color Feature Parameters s D

Ground Truth AdalN
ﬁ_, MLP _*ﬁ Input Image Discriminator Input Image Discriminator

— —

Color Feature Color Feature

« Coloring with Adaptive Instance Normalization (AdalN)

AdalIN(z,C) = o(C) (z;(—;:gz)) + u(C),

79



Colorization networks

Using color distribution like style information

Instead of

Color distribution

80



RESULTS

Ground truth Res-cGAN Ours Ground truth Res-cGAN Ours Ground truth Res-cGAN Ours

animation
(few-shot)
T i \ Fhize . Taijae - . hi
(few-shot) S
Ll
=)
cartoons

(one-shot) [\ N8

real-images
(few-shot)



RESULTS

Ground truth Res-cGAN Ours Ground truth Res-cGAN Ours




RESULTS

Res-cGAN Ours Ground truth Res-cGAN

Ground truth




EXPERIMENTS

S-way 15-way

5-shot  10-shot 5-shot  10-shot

Ours (Unsup.) 87.50% 87.50% 69.44% 70.83%
Ours (Sup.) 91.66% 87.50% 72.22% 73.61%

Table 2. Classification accuracy of the threshold triplet loss.

We show corresponding images of the top-3
color features retrieved from our memory
networks.

Our memory networks are trained to
retrieve color features highly relevant to the
content of the query image.

We additionally show high classification
accuracy of our memory networks.




EXPERIMENTS

Comparison to baselines Ground truth
CIC Deep Priors Pix2pix Ours
PSNR  22.64 22.14 14.63 21.78

¥R FER

A A LA BA TN
RR RA

RR RR

(a) MSE-based (b) GAN-based
One-shot Few-shot
User-study LPIPS User-study LPIPS
Ours 75 % 8.48 71% 1.34
CIC 10% 9.89 7% 1.80
Pix2pix 5% 13.47 16% 2.34

Deep Prior 10% 19.26 4% 2.03

Deep Priors

/ usopia
| wermeqre |
Azttt PN\
L maor [




PRACTICAL USE CASE

Colored Outputs

Test Set: { | Training Set:
Mickey Mouse (1920-30s) Mickey Mouse (2000s)




EXPERIMENTS ON MEMORY NETWORKS

Memory networks require a lot of memory!?

« Storing 10,000 features for our memory network
only requires an additional 10, 000 x 512 x 32 =
19.53MB of memory

Memory networks require a lot of parameters?

| Ours | CIC | Pix2pix | Deep Priors
Parameters | 12m | 32m | 14m | 35m

 Even with external memory networks, our model has
the least amount of trainable parameters

 Qur actual memory networks only have 262k
parameters

Robust to hyperparameters!?

T 8
|

Size|of training set 7
|
|

f§ %6 e O

LPIPS

Qg
8,
71 I
I
I
6 1 |
I
I
51 |
I
4+ '

0 50 100 150 20'(§S 1000 400 05 10 ssls'.o 20.0
Memory size Color Threshold

Figure 9. Analysis of memory size and color threshold. LPIPS
scores are similar across various hyperparameters of the memory
networks. Quality drops (high LPIPS) only with excessively small
or large hyperparameters.




FAILURE CASES

Ground truth Failure Case Success Case

* When our memory networks are
insufficiently trained, they can retrieve
an irrelevant memory slot

* Proper optimization of memory
networks is key

Hl . B g

:\-EI-I :\-El-i n-E




FAILURE CASES

Input Image Output by Top-1 Output by Top-2 Output by Top-3

R R A

Figure 6. Colorization results using the top-3 memory slots. We
show that our memory networks can retrieve appropriate color fea-
tures for a given input. Different memory slots may be used to
produce diverse results. All other samples in the paper are colored
using the top-1 memory slot.

/

* Users can utilize top-k slots instead of top-| memory slot




Overview of This Talk

* Intro to conditional generative models

* My own research on interactive automatic colorization
* Colorization using natural language [ECCV’| 8]
* Few-shot colorization via memory networks [CVPR’| 9]
* Reference-based sketch colorization using augmented self-exemplar [CVPR’20]

* Other work on interactive generative models and future research
directions




Reference-based Sketch Colorization

@
(&)
c
[0}
e
(]
e
[0}
0

Figure 1: Qualitative results of our method on the CelebA [10] dataset. Each row has the same content while each column

has the same reference.



Challenges in Reference-based Sketch Colorization

* Sketch images are information-scarce, so there is little cue for their
colorization.

* Reference-based colorization can no longer be trained in a paired
setting.




Model Architecture

* We utilize a geometrically-
transformed self-images as
pseudo reference, which allows
model training in a paired setting.

* Through pixel-wise correspondence o
naturally obtained, we directly R
supervise which pixel colors in the 4[
reference to transfer to which pixel W]~

in the target.

Lirip o

____________

SCFT |W
”»‘, Module

P
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reshape —‘ EV”*
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! E
reshape] l :
reshape —l E
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Qualitative Results

Sketch

Exemplar




Qualitative Results

(& =@l

& 9

(a) Sketch (b) Reference (c) Synthesized image

Figure 2: Visualization of our attention mechanism.

Sun et al. Huang et al. Lee et al. Huang et al.
[2019] [2018] [2019] [2017]
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Overview of This Talk

* Intro to conditional generative models

* My own research on interactive automatic colorization
* Colorization using natural language [ECCV’| 8]
* Few-shot colorization via memory networks [CVPR’| 9]
* Reference-based sketch colorization using augmented self-exemplar [CVPR20]

* Other work on interactive generative models and future research
directions




Future Research Directions

* Support for real-time, multiple iterative, maybe local interactions

* Reflecting higher-order user intent in multiple sequential interactions

* Revealing inner-workings and interaction handle

* E.g., explicitly using (interpretation-friendly) attention module
* Better simulating user inputs in the training stage
* Incorporating data visualization and advanced user interfaces

* Leveraging hard rule-based approaches, e.g. ,following sharp edges

* Incorporating users’ implicit feedback and online learning




GauGAN: Interactive Tool of SPADE

http://nvidia-research-mingyuliu.com/gaugan/

GAUGAN

GauGAN, named after post-Impressionist painter Paul Gauguin, creates
photorealistic images from segmentation maps, which are labeled sketches that
depict the layout of a scene.

Artists can use paintbrush and paint bucket tools to design their own landscapes

with labels like river, rock and cloud. A style transfer algorithm allows creators to
apply filters — changing a daytime scene to sunset, or a photorealistic image to 2
painting. Users can even upload their own filters to layer onto their masterpieces,
or upload custom segmentation maps and landscape images as a foundation for

their artwork

(88

leg > | Reso

LAUNCH INTERACTIVE DEMO

Park et al., Semantic Image Synthesis with Spatially-Adaptive Normalization, CVPR’9 (Oral)

W
= |
e
o
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http://nvidia-research-mingyuliu.com/gaugan/

GANPaint: Interactive Image Generation

Bau et al., GAN Dissection:Visualizing and Understanding Generative Adversarial Networks, ICLR’|9
https://youtu.be/yVCgUYe4|TM

Goal Select a feature brush & strength and enjoy painting;

* A user edits a generated image or a
photograph with high-level concepts
rather than pixel colors

* A software manipulates an image to
achieve a user-specified goal while
keeping the result photorealistic

draw [fémove

Interactive image generation demo page: un-do reset
http://gandissect.res.ibm.com/ganpaint.html



https://youtu.be/yVCgUYe4JTM
http://gandissect.res.ibm.com/ganpaint.html

GANPaint: Interactive Image Generation

Bau et al., GAN Dissection:Visualizing and Understanding Generative Adversarial Networks, ICLR’|9
https://youtu.be/yVCgUYe4|TM

Contributions

* Provide the first systematic analysis for understanding the internal representations of GANs
* Show several practical applications enabled by the analytic framework

* Provide open source interpretation tools: https://github.com/CSAILVision/gandissect

featuremap thresholded force r,,on inserted image segmentation
D [ ’ R . '
single unit u [ upsample 4.'
unforced units causal units U RN
m I
; i segment
1
£ r'>t X, s.(x)
generated image segmentation ablated image .

: generate
E r f
Y4

L 1
generator X Sc(x)

¢ (a) dissection (b) intervention

segment I

force s off



https://youtu.be/yVCgUYe4JTM
https://github.com/CSAILVision/gandissect

GANPaint: Interactive Image Generation

€9# Iun

LEC# HuN

(b) Identify GAN units that matchtrees

(d) Activating units adds trees



Interactive Data Labeling

Papadopoulos et al.,

Extreme Clicking for Efficient Object Annotation,
CVPR’17

Different User Interfaces should also be considered.

Submit

(b)

Figure 1. Annotating an instance of motorbike: (a) The conven-
tional way of drawing a bounding box. (b) Our proposed extreme
clicking scheme.



Interactive Segmentation

Acuna et al., Efficient Annotation of Segmentation Datasets with
PolygonRNN++, CVPR’|8
https://youtu.be/evGqMnL4P3E

~
PolygonRNN++: Interactive Annotation Tool
| Annofate Your Datasefs Much Faster

autonamoeys diving imagery

Contributions

(@) Design a new CNN encoder architecture

(b) Show how to effectively train the model with Reinforcement Learning
(c) Significantly increase the output resolution using Graph Neural Network

medical imog ')

Resnet-50
canv 1 [ [T r=s1 res 2 res 3 res 4

P ZBx28
x512 %2048

oefial imagery

genaral scenas

Atte-
nfion

&Cﬂgﬁ —* GGHN
=0 verfex

polygon prediction

W

3 %3 conv

R S
Dy
"125 Skip Features

Figure 4: Residual Encoder architecture. Blue tensor is fed to GNN, while
the orange tensor is input to the RNN decoder.

(2) @

olygon upscalin
polya % g

polygon evaluation

Figure 2: Polygon-RNN++ model (figures best viewed in color)



https://youtu.be/evGqMnL4P3E

Interactive Segmentation

* Interactive object segmentation is a well studied problem with the aim to reduce
the time and cost of annotation

* Human-level performance was achieved with only a few user clicks per object

PolygonRNN-++ (with GT boxes) Human Annotator Automatic (0 clicks)  Interactive (6 clicks) GT (29 clicks) Automatic (0 clicks)  Interactive (8 clicks) GT (66 clicks)
loU:100

loU:71.15 loU:89.73 loU:100 loU:77.96 loU:86.39

e

0 clicks : 389 clicks
(a) Automatic annotation (b) Semi-automatic annotation

(@), (b): Acuna et al., Efficient Annotation of Segmentation Datasets with PolygonRNN++, CVPR’|8




Interactive Segmentation

4 N
Ling et al., Fast Interactive Object Annotation with Curve-GCN, @ Curve-GCN

CVPR’ | 9 =) In'rerc’ri O'bjecf Anno’ro’rio Tool

https://youtu.be/ycD2BtO-QzU .....

Contributions

* Alleviate the sequential nature of Polygon RNN, by 7
predicting all vertices simultaneously using a Graph - —
Convolutional Network (GCN) 4

e Run at 29.3ms in automatic, and 2.6ms in interactive mode,

. Figure 1: We propose Curve-GCN for interactive object annota-
- ++
maklng it 10x and 100x faster than POI)lgon RNN tion. In contrast to Polygon-RNN [7, 2], our model parametrizes

\@ Add box . Polygon € ) Spline

Feature map F Al

CNN || T
Encoder |

initialization prediction

Boundary
Prediction

Feature
Extraction

Feature
Extraction

Figure 2: Curve-GCN: We initialize N control points (that form a closed curve) along a circle centered in the image crop with a diameter of 70% of image

height. We form a graph and propagate messages via a Graph Convolutional Network (GCN) to predict a location shift for each node. This is done iteratively
(3 times in our work). At each iteration we extract a feature vector for each node from the CNN’s features F', using a bilinear interpolation kernel.



https://youtu.be/ycD2BtO-QzU

Interactive Neural Machine Translation

Word-Based
O . : .
f Reference: The pain may also wake you up during the night .
The pain may also |break | during the night . ——— The pain may also wake you up during night .

}

Figure 1: Single iteration of prefix-based IMT. The user wants to translate the French sentence “La doleur peut également vous
réveiller pendant la nuit .” into English. The user corrects the first wrong word from the hypothesis provided by the system,
introducing the word “wake” at position 5. Next, the system generates a new hypothesis, that contains the validated prefix
together with the corrected word. Note that, although the system generates a partially correct suffix, in this new hypothesis
it is also introduced a new error (“during night” instead of “during the night”). This behaviour is intended to be solved with
the segment-based approach.

[Alvaro Peris, Miguel Domingo and Francisco Casacuberta. 2017. Interactive neural machine translation.
In Computer Speech and Language.]



https://www.researchgate.net/publication/312275926

Interactive Neural Machine Translation

Segment-Based

@ f Reference: The pain may also wake you up during the night .

_________ ? f (

Figure 2: Segment-based IMT iteration for the same example than in Fig. 1. In this case, the user validates two segments
and introduces a word correction. The system generates a new hypothesis that contains the word correction and keeps the
validated segments. The user feedback is f = “The pain may also”, “wake”, “during the night .”. The reaction of the system
is to generate the sequence of non-validated segments g = A, “you up”, A; bemg A the empty Strlng The hypothesis offered by
the system consists in the combination of the validated and non-mlldated segments.

y_ __. _[_ ___J ____________________ e

[Alvaro Peris, Miguel Domingo and Francisco Casacuberta. 2017. Interactive neural machine translation. In Computer Speech and
Language.]



https://www.researchgate.net/publication/312275926

Interactive Neural Machine Translation

Interactive-predictive System for Multimodal Sequence to Sequence Tasks

Client (website) HTTP server Python Server
4 (T A H @ -
o1 Encoder
User - o| Decoder
ObJect _o! (©)
O PHP

- Y1, Y2

I Constrained

| Search
Alternative hypothesis

<—Ry1:y21 Y3, Y4, -- 1yi] \ 3) J J

Figure 1: System architecture. The client, a website, presents the user several input objects (images, videos or
texts) and a prediction. The user then introduces a feedback signal, for correcting this prediction. After being
introduced, the feedback signal is sent to the server—together with the input object—for generating an alternative
hypothesis, which takes into account the user corrections.

Feedback (f)

[Alvaro Peris and Francisco Casacuberta. 2019. A Neural, Interactive—predictive System for Multimodal Sequence to Sequence Tasks. ACL 2079.]



https://arxiv.org/pdf/1905.08181

Interactive Neural Machine Translation

Interactive-predictive System for Multimodal Sequence to Sequence Tasks

0 System A group of football players in red uniforms.

1 User A @group of football players in red uniforms.
System A football player in a red uniform is holding a football.

5 User A football player in a red uniform is E'holding a football.
System A football player in a red uniform is wearing a football.

3 User A football player in a red uniform is wearing a @footba]l.
System A football player in a red uniform is wearing a helmet.

4 User A football player in a red uniform is wearing a helmet.

Figure 3: Interactive-predictive session for correcting the caption generated in Fig. 2. At each iteration, the user
introduces a character correction (boxed). The system modifies its hypothesis, taking into account this feedback:
keeping the correct prefix (green) and generating a compatible suffix.




Interactive Neural Machine Translation

Self-Regulated interactive
learning guides to choose a
certain type of feedback
Four different types of feedback
|. Full correction
2. Error marking

3. Self-supervision
4. None

Figure 1: Human-in-the-loop self-regulated learning.

[Julia Kreutzer and Stefan Riezler. 2019. Self—Regulated Interactive Sequence—to—Sequence Learning. ACL 2019.]



https://arxiv.org/pdf/1907.05190.pdf

Interactive Neural Machine Translation

. x  Sie greift in ihre Geldborse und gibt ihm einen Zwanziger .

310 |9 Itattacks their wallets and gives him a twist .

« y*  She reaches into her purse and hands him a 20 .

i x  Und als ihr Vater sie sah und sah , wer sie geworden ist , in ihrem vollen Méddchen-Sein , schlang er seine Arme um sie und brach in Trinen aus .
=109 ¢y  And when her father saw them and saw who became them , in their full girl ’s , he swallowed his arms around them and broke out in tears .

= y*  When her father saw her and saw who she had become , in her full girl self , he threw his arms around her and broke down crying .

i x  Und durch diese zwei Eigenschaften war es mir moglich , die Bilder zu erschaffen , die Sie jetzt sehen .

5159 | 4 And through these two features; I was able to create the images you now see .

- y* And it was with those two properties that I was able to create the images that you ’re seeing right now .

Table 1: Examples from the IWSLT17 training set, cost (2nd column) and feedback decisions made by Reg3. For
weak feedback, marked parts are underlined, for full feedback, the corrections are marked by underlining the parts
of the reference that got inserted and the parts of the hypothesis that got deleted.




Interactive Neural Machine Translation

Predict
Original human-interactive NMT partial ¢
translation

requires many efforts, such as
editing or deleting

To reduce the human efforts, it
employs the reinforcement
learning idea of humans
providing reward signals in form
of judgments on the quality of
the machine translation

parameters

Figure 1: Interaction of the NMT system with the human
during learning for a single translation.

[Khanh Nguyen, Hal Daumé lll, and Jordan Boyd—Graber. 2017. Reinforcement Learning for Bandit Neural
Machine Translation with Simulated Human Feedback. EMNLP 20717.]



http://aclweb.org/anthology/D17-1153

Interactive Neural Machine Translation

la réponse que nous , en tant qu’ individus , acceptons est que nous sommes libres parce que nous nous gouvernons
nous-mémes en commun plutdt que d’ étre dirigés par une organisation qui n’ a nul besoin de tenir compte de notre existence .
the answer that we as individuals accept is that we are free because we rule ourselves in common ,

rather than being ruled by some agency that need not take account of us . < /s>

SRC

Partial sampled translation Feedback
the 1
the answer 1
the answer we 0.6964
the answer we , 0.6246
the answer we as individuals allow to 14 are 0.6008
the answer we , as individuals , go down to speak 8 , are being free because we govern ourselves

. 0.5155
, rather from being based together
the answer we , as people , accepts is that we principle are free because we govern ourselves , 0.5722

rather than being led by a organisation which has absolutely no need to take our standards . < /s>

Table 4: Interaction protocol for three translations. These translations were sampled from the model when the algorithm
decided to request human feedback (line 10 in Algorithm 1). Tokens that get an overall negative reward (in combination with
the critic), are marked in red, the remaining tokens receive a positive reward. When a prefix is good (i.e. > p, here p = 0.8) it
1s stored 1n the buffer and used for forced decoding for later samples (underlined).




Interactive Neural Machine Translation

Interactive NMT
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Future Research Directions

* Support for real-time, multiple iterative interactions

* Reflecting higher-order user intent in multiple sequential interactions

* Revealing inner-workings and interaction handle

* E.g., explicitly using (interpretation-friendly) attention module
* Better simulating user inputs in the training stage
* Incorporating data visualization and advanced user interfaces

* Leveraging hard rule-based approaches

* Incorporating users’ implicit feedback and online learning




Useful Links

* 2019 ICML Workshop on Human In the Loop Learning (HILL)

* https://sites.google.com/view/hill2019
* Videos: https://icml.cc/Conferences/2019/ScheduleMultitrack?!event=351 |

* 2020 1UIl 2020 Workshop on Human-Al Co-Creation with Generative
Models (programs are not yet updated)

* https://hai-gen2020.github.io/

* Key researchers
* David Bau: https://people.csail.mit.edu/davidbau/home/

* Sanja Fidler: https://www.cs.utoronto.ca/~fidler/
* Richard Zhang: https://richzhang.github.io/

* Jun-Yan Zhu: https://people.csail.mit.edu/junyanz/



https://sites.google.com/view/hill2019
https://icml.cc/Conferences/2019/ScheduleMultitrack?event=3511
https://hai-gen2020.github.io/
https://people.csail.mit.edu/davidbau/home/
https://www.cs.utoronto.ca/~fidler/
https://richzhang.github.io/
https://people.csail.mit.edu/junyanz/

Novel conditional generative models and their user interfaces
from a user-centric perspective can open up new research
directions in further advancing artificial intelligence techniques
and applications.

Thank you!




Overview of This Talk

* Intro to generative adversarial networks (GANs) and conditional
GANs

 Motivations of User-Interactive Generative Models

* Interactive Generative Tasks

* Taxonomy of User Input




Generative Adversarial Networks

* Generative: It is a model for generation.

* Networks: The model is formed as neural networks.

* Adversarial: Improves the generation quality via adversarial training
(using an additional discriminator).




Progressive Growing of GANs AN an

* Generated Images

Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation, ICLR’ |8 120
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Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR’9
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Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks, ' ; f



Applications of Generative Models @ |ntmductaon€§:,

* Realistic samples for artwork, super-resolution, colorization, etc.

123



Applications of Generative Models @ |ntmduction<§5

* Super Resolution

« C. Ledig, et al., "Photo-realistic Single Image Super-Resolution using a Generative A
dversarial Network”, CoRR, abs/1609.04802.

orginal bicubxe SRResNet SROAN
(21.59dB/0.6423) (23.444BA.7777) __(20.34dB/0.6562)

f -

\




Applications of Generative Models @ |ntroductaon<§:,

* In-Painting
- Raymond Yeh, et al., "Semantic Image Inpainting with Perceptual and Contextual Losses”,
arXiv 1607.07539

Figure 4: For each example, Column 1: Original images from the dataset. Column 2: Images with
R0% random missing pixels. Column 3: Inpainting of column 2 by our method. Column 4: Image
with large central region missing. Column 5: Inpainting of column 4 by our method. 125



(Paired) Image-to-Image Translation @ Extensions &

* pix2pix: Paired Image-to-lmage Translation

Input
Labels to Street Scene ——
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Phillip Isola et al. Image-to-lmage Translation with Conditional Adversarial Networks, CVPR’ |7



C)’CIeGAN Extensions

* CycleGAN: Unpaired Image-to-Image Translation

presents a GAN model that transfer an image from a source domain A to a target
domain B in the absence of paired examples.

Monet =_ Photos _ | Zebras C Horses ——— Summer Z_ Winter

horse —» zebra

Photograph Van Gogh
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Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle Consistent Adversarial Networks, 2017



DCGAN (Generative Model)

D D(G(2))

Use deconvolution, ReLU \ /

No pooling layer (Instead strided convolution)
Use batch normalization
Adam optimizer(Ir=0.0002, beta|=0.5, beta2=0.999)

Use convolution, Leaky RelLU

/
D D(x)

X 128



C)’CIEGAN Extensions

Generator (From A to B) 1l Loss Generator (From B to A)

Real image in domain A Fake image in domain B \ Reconstructed image

[84 generates a reconstructed image of domain A.

This makes the shape to be maintained when

(\ [1u8 generates a horse image from the zebra.

Real or fake?

/

Discriminator for domain B

A: ebra domain

B: Horse domain
Real image in domain B
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C)’CIEGAN Extensions

Generator (From A to B)

. Gas

Real image in domain A Fake image in domain B

Real image in domain B

Real or fake?

/

Discriminator for domain B

A: ebra domain
B: Horse domain
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C)’CleGAN Extensions

Generator (From A to B)

Real image in domain A Fake image in domain B

i A: ebra domain

B: Horse domain
Real image in domain B

Real or fake?

/

Discriminator for domain B

131



C)’CIEGAN Extensions

Generator (From A to B) 1l Loss Generator (From B to A)

Real image in domain A Fake image in domain B \ Reconstructed image

[84 generates a reconstructed image of domain A.

This makes the shape to be maintained when

(\ [1u8 generates a horse image from the zebra.

Real or fake?

/

Discriminator for domain B

A: ebra domain

B: Horse domain
Real image in domain B
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C)’CIeGAN Extensions

e Results

Input

winter Yosemite — summer Yosemite

133

Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle Consistent Adversarial Networks, 2017



CycleGAN @ Extensions ‘Eg:,

e Results

Odd columns contain real images and even columns contain generated images.
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SVHN-to-MNIST MNIST-to-SVHN
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https://github.com/yunjey/mnist-svhn-transfer



https://github.com/yunjey/mnist-svhn-transfer

CycleGAN @ Extensions ‘Eg:,

e Results

Odd columns contain real images and even columns contain generated images.
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SVHN-to-MNIST MNIST-to-SVHN
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https://github.com/yunjey/mnist-svhn-transfer



https://github.com/yunjey/mnist-svhn-transfer

Conditional Generation (and Translation)

* An additionally given input works as a condition that steers the
generation and translation processes in a user-driven manner.

e Two GAN-based models: CGAN and ACGAN




Conditional GAN and ACGAN

* Auxiliary Classifier GAN (ACGAN), 2016
* Improves the training of GANs using class labels

(fake ) Fake (fake ) (fake) ()
-
| fake | cfass ]
D
@ RGAN ﬂ ACGAN m
| fake |
Xrewt (data)) | 6@ 6(2) G (Z} rake

i E @ ﬁj ¥

Lz |
C lclass Z (noise)

k) [}

Conditional GAN Semi-Supervised GAN InfoGAN AC-GAN
(Mirza & Osindera, 2014) (Odena, 2016; Salimans, et al., 2016) (Chen, et al, 2016) (Present Work)
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Conditional GAN and ACGAN

* Auxiliary Classifier GAN (ACGAN), 2016
* Improves the training of GANs using class labels

= - e o
GA:N/T\ ) CGAN /T:T}_\ ~ ACGAN t/ 1.? \[
—" 5(%3} : oz X ¢ lf"}

(a) () ()
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MULTI-DOMAIN IMAGE-TO-IMAGE TRANSLATION

Domain A Domain B Domain C Domain D
(blond hair) (black hair) (brown hair) (gray hair)




STARGAN

(b) Original-to-target domain (c) Target-to-original domain
I

Fake image Fake image Fake i |mage

Original domain B
\_ﬂ Y

Real / Fake

Adversarial loss Target domain

(a) Training the discriminator

Real image Fake image

|

B

Input image Reconstructed image

(1), (2) J (1)
2

N
Real / Fake

Adversarial loss  Original domain

Target domain

(1) when training with real images
(2) when training with fake images



STARGAN
Depth-wise Concatenation

(b) Original-to-target domain (128 x 128 x 7)

Fake image

Target domain Input image
(128 x 128 x 4) (128 x 128 x 3)

Spatial replication 1‘

Target domain

(1x1x4) Values: (1, 0,0, 1) Domain label
L Input image Dimension: (1 X 1 x 4)

(128 x 128 x 3) T 0
141




STARGAN

(b) Original-to-target domain (d) Fooling the discriminator
I

Fake image Fake image

(a) Training the discriminator

Real image Fake image

(1), (2) J (1)
2

N
Real / Fake

Adversarial loss  Original domain

J U

2 N

Adversarial loss Target domain

.. . i Target domain
(1) when training with real images J

(2) when training with fake images

Input image



STARGAN

(b) Original-to-target domain (c) Target-to-original domain
I

Fake image Fake image Fake i |mage

Original domain B
\_ﬂ Y

Real / Fake

Adversarial loss Target domain

(a) Training the discriminator

Real image Fake image

|

B

Input image Reconstructed image

(1), (2) J (1)
2

N
Real / Fake

Adversarial loss  Original domain

Target domain

(1) when training with real images
(2) when training with fake images



