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My Current Research
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• Image-to-image translation

• Automatic image colorization

• Data augmentation via generative adversarial networks

• Visual analytics for interpreting and interacting with 
deep neural networks

• Interactive labeling techniques and systems

• Medical image recognition

• Machine reading comprehension

• Time-series prediction



Overview of This Talk
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• Intro to conditional generative models [5 min]

• My own research on interactive automatic colorization [45 min]
• Colorization using natural language [ECCV’18]

• Few-shot colorization via memory networks [CVPR’19]

• Reference-based sketch colorization using augmented self-exemplar [CVPR’20]

• Other work on interactive generative models and future research 
directions [10 min] 



Definition of Generative Model

5

• Recognition vs. Generation (and Translation)

• Recognition: compresses a large number of input values into a small number of 
output values

• Generation: expands a small number of input values into a large number of 
output values. 

• Translation: transforms a large number of input information into another large
number of output values. 

• Conditional Generation: additional input is given, which steers the generation 
processes in a user-driven manner. 
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Recognition Tasks Introduction

Discriminative

Model woman

The discriminative model learns how to classify input to its class.

man

(1)

(1)

(2)

(2)

Input image

(64x64x3)
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Generation Tasks Introduction

Generative

Model

Latent

code

The generative model learns the distribution of training data.

(100)

Image
(64x64x3)
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Translation Tasks Introduction

Translation

Model

Image
(64x64x3)

Image
(64x64x3)



CONDITIONAL GENERATION (AND TRANSLATION)
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• An additionally given input works as a condition that steers the 
generation and translation processes in a user-driven manner. 

• Two GAN-based models: CGAN and ACGAN



STARGAN: MULTI-DOMAIN IMAGE TRANSLATION
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Input Blond hair Gender Aged Pale skin Input Angry Happy Fearful



Motivations for Human-in-the-Loop Approach
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• As we discussed earlier, unlike recognition tasks, generative models gives 
the output composed of a large number of values.

• User intent are often too complex to describe as a simple categorical 
variable.  
-> Flexible, sophisticated forms of user inputs are necessary. 

• Some among them may not be satisfactory to users nor aligned with user 
intent.
-> Users should be able to partially edit the output in an iterative manner. 

• Machine learning models should facilitate such editing processes by 
properly propagating user inputs in the generation output. 



Taxonomy of User Inputs (or Conditions) in Generative Models
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• Global (male or female) vs. Local (strokes and scribbles)

• Reference-based vs. non-reference-based

• Reference image

• Users’ own vs. one among a pre-given set

• Strokes and scribbles

• Positive vs. negative clicks (segmentation)

• Particular colors (colorization)

• Interaction modality

• Text, voice, AR/VR, …



Strokes and Scribble User-Input

13

Interactive colorization demo page, 

https://paintschainer.preferred.tech

https://paintschainer.preferred.tech/index_en.html


(Potentially Interactive) Generation and Translation Tasks
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• Computer Vision

• Image generation and translation

• Facial attribute transfer, pose transfer, …

• Interactive instance segmentation for labeling

• Automatic colorization

• DeepFashion

• Video re-targeting

• Natural Language Generation

• Post-editing in NMT

• Controllable paraphrasing



Intro to Automatic Image Colorization
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• Basically, it is an image-to-image translation task from a grayscale or 
sketch image into a colorized one. 
• Thus, adversarial learning via an additional discriminator, or simply GAN,  is 

usually adopted. 

• Obviously, it has practical impact in content creation, e.g., animation 
and cartoon. 

• It can potentially be used as a general-purpose, self-supervised 
learning task, which works as a pre-training method for other 
downstream tasks. 

• In general, this task is trained in a paired setting, but as will be seen in 
the third work I will present, it is not always the case, making the task 
challenging. 



Colorization as Self -Supervised Learning

16

• Vondrick et al., Tracking Emerges by Colorizing Videos [ECCV’18]

• https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html


pix2pix: Conditional GAN for Paired Image-to-Image Translation
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• Isola et al., Image-to-Image Translation with Conditional Adversarial 
Networks [CVPR’17]



pix2pix: Conditional GAN for Paired Image-to-Image Translation

18

• Isola et al., Image-to-Image Translation with Conditional Adversarial 
Networks [CVPR’17]

Img source: http://www.lherranz.org/2018/08/07/imagetranslation/



Overview of This Talk
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• Intro to conditional generative models 

• My own research on interactive automatic colorization
• Colorization using natural language [ECCV’18]

• Few-shot colorization via memory networks [CVPR’19]

• Reference-based sketch colorization using augmented self-exemplar [CVPR’20]

• Other work on interactive generative models and future research 
directions



COLORING WITH WORDS: 
GUIDING IMAGE COLORIZATION THROUGH 

TEXT-BASED PALETTE GENERATION (ECCV 2018)

Hyojin Bahng,* SeungjooYoo,* Wonwoong Cho,* David K. 

Park, Ziming Wu, Xiaojuan Ma, and Jaegul Choo
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GOAL
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Map text to colors



MOTIVATION

24

• Text can be mapped to multiple colors

Red

Google

emptyForest

green

masculin



MOTIVATION
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clarendon gingham moon juno slumber crema ludwig



MOTIVATION
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MOTIVATION
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• Catch hidden meaning in text



OVERVIEW OF TEXT2COLORS



OVERVIEW: HOW OUR MODEL WORKS
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PAT DATASET



WHY WE MADE OUR OWN DATASET
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학습

데이터

디버깅

글쓰기
모델설계

• Important keywords in writing our research paper

문제정의



PAT DATASET
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• First dataset to address rich text and multimodality

• First large-scale color dataset matched with words



PAT DATASET
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• Data is crawled from color-hex.com

• 4 annotators manually refined the data



PAT DATASET
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• Data is crawled from color-hex.com

• 4 annotators manually refined the data



PROPOSED METHOD



PROPOSED METHOD (OVERVIEW)
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Two Conditional GANs

Maps text to color palette Colors grayscale image using the palette



PROPOSED METHOD (OVERVIEW)

GRU Decoder 

with Attention

𝑥1 𝑥2 𝑥3 𝑥𝑇

𝑦

Generator 𝐺0

ො𝑦

Discriminator 𝐷0

𝑓𝑎𝑘𝑒

𝑟𝑒𝑎𝑙ҧ𝑐

ҧ𝑐

Conditioning 

Augmentation

𝒉𝟑 𝒉𝑻

Text-to-Palette Generation Networks (TPN) Palette-based Colorization Networks (PCN)

Conditional Variable Ƹ𝑐

Discriminator 𝐷1

መ𝐼
𝑓𝑎𝑘𝑒

𝑝

𝑟𝑒𝑎𝑙
𝑝

𝐼

ො𝑦 (test) 

Generator 𝐺1

𝑝 (train)

ො𝑦 (test) 

መ𝐼𝐿

𝑫𝟎

⋯𝒉𝟐 𝑫𝟎

𝑫𝟏

𝑫𝟏𝒉𝟏

37

Two Conditional GANs

Maps text to color palette Colors grayscale image using the palette



TEXT-TO-PALETTE GENERATION NETWORKS (TPN)
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Sequential input

Sequential output
“Seq2seq with Attention”Generator Architecture



TEXT-TO-PALETTE GENERATION NETWORKS (TPN)
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Generator Architecture
Our Goal



TEXT-TO-PALETTE GENERATION NETWORKS (TPN)
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Fixed encoder outputs ℎ

Sample conditional variable 

Ƹ𝑐~𝑁 𝜇(ℎ), Σ(ℎ)

Adding randomness! 

41

Generator Architecture
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Fixed encoder outputs ℎ
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Adding randomness! 
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Generator Architecture
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Generator Architecture



TEXT-TO-PALETTE GENERATION NETWORKS (TPN)

5

Training the Discriminator

Real palette 𝑦
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Conditioning variable ҧ𝑐
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𝑫𝟎
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TEXT-TO-PALETTE GENERATION NETWORKS (TPN)

Training the Generator

4

𝑟𝑒𝑎𝑙
Conditioning variable ҧ𝑐

𝑫𝟎

Fake palette ො𝑦
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Smooth 

L1 LossReal palette 𝑦

Fake palette ො𝑦



PROPOSED METHOD (OVERVIEW)
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Two Conditional GANs

Maps text to color palette Colors grayscale image using the palette



PALETTE-BASED COLORIZATION NETWORKS (PCN)

5

Generator Architecture (Training)
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extract

palette 

Generator (U-Net)

Ground-truth 

Image

Colored OutputGrayscale Image



PALETTE-BASED COLORIZATION NETWORKS (PCN)

5

Generator Architecture (Training)
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extract

palette 

Generator (U-Net)

Ground-truth 

Image

Colored OutputGrayscale Image

Provide “hint” from 

the ground truth 

Make the network depend

on this information to 

perform colorization

Becomes “controllable” 

during test time!



PALETTE-BASED COLORIZATION NETWORKS (PCN)

5

Generator Architecture (Test time)
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Generator (U-Net)

Colored OutputGrayscale Image

Generated palette 

from TPN

Can inject any color 

palette we want to the 

grayscale image



PALETTE-BASED COLORIZATION NETWORKS (PCN)

5

Training the Discriminator

Ground-truth palette
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𝑫𝟏 𝑓𝑎𝑘𝑒
Fake image መ𝐼

𝑫𝟏

Ground-truth palette
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PALETTE-BASED COLORIZATION NETWORKS (PCN)

5

Training the Generator

Fake image መ𝐼
𝑫𝟏

Ground-truth palette

𝑟𝑒𝑎𝑙
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Real image 𝐼 Fake image መ𝐼

Smooth 

L1 Loss



TEXT2COLORS

Testing the model
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EXPERIMENTS



EXPERIMENTS: QUALITATIVE RESULTS



EXPERIMENTS: QUALITATIVE RESULTS
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EXPERIMENTS: QUALITATIVE RESULTS
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EXPERIMENTS: QUALITATIVE RESULTS
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EXPERIMENTS: QUALITATIVE RESULTS
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EXPERIMENTS: ABLATION STUDY & ATTENTION MECHANISM
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EXPERIMENTS: QUANTITATIVE COMPARISON
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EXPERIMENTS: QUALITATIVE COMPARISON



FAILURE CASES
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Overview of This Talk

63

• Intro to conditional generative models 

• My own research on interactive automatic colorization
• Colorization using natural language [ECCV’18]

• Few-shot colorization via memory networks [CVPR’19]

• Reference-based sketch colorization using augmented self-exemplar [CVPR’20]

• Other work on interactive generative models and future research 
directions



COLORING WITH LIMITED DATA : 
FEW-SHOT COLORIZATION VIA MEMORY-AUGMENTED NETWORKS

(CVPR 2019)

SeungjooYoo, Hyojin Bahng, Sunghyo Chung, 

Junsoo Lee, Jaehyuk Chang, and Jaegul Choo



MOTIVATION
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• Existing deep learning colorization models require a significant amount of 

training data

• Data for animations and cartoons are often small in number

# of images: 14,197,122

ImageNet

# of images: 9600

유미의세포들

• Data Scarcity



MOTIVATION
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• Data Scarcity in cartoons and animations



Requires significant cost for creating animations

Black-and-White 3D modeling Colorization



MOTIVATION

67

• Dominant Color Effect

• Deep colorization models tend to ignore diverse colors present in a training set and learn only 

a few dominant colors. This can minimize overall loss, but has unsatisfactory results. 

• This can minimize the overall loss, but has unsatisfactory results



MOTIVATION
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• Dominant Color Effect



MODEL OVERVIEW
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Our memory-augmented colorization model MemoPainter: 

• Can color rare instances and suffers less from Dominant Color Effect

• Can be trained with very little data, even one-shot and few-shot 
learning

• Introduce a novel Threshold Triplet Loss for unsupervised training of 
memory networks. 



MODEL ARCHITECTURE
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MODEL ARCHITECTURE
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• During test time, we retrieve the top-1 color feature from our 
memory and give it as a condition to the trained generator



MODEL ARCHITECTURE
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• Stores three different types of information: key memory, value 
memory, and age. 

• Key: spatial features

• Value: color features

• Age: age of memory slot

normalized

ResNet

Case2: Loss = 

Update: 

Case1: Loss = 

Update: 

MLP

Query

Spatial 

Features

Color 

Features

Input Image

Threshold Triplet Loss

k-nearest neighbors

Ground Truth 

Color Feature

AdaIN 

Parameters

Output Image

Generator

Discriminator

Memory Networks

Colorization Networks

Memory Update

Input Image

Color Feature

Real Image

DiscriminatorInput Image

Color Feature

FC

n
o
rm
a
lized

R
esN

et

C
ase2

: 
L

o
ss =

 

U
p

d
ate: 

C
ase1

: 
L

o
ss =

 

U
p

d
ate: 

M
L

P

Q
u

ery

S
p

atial 

F
eatu

res

C
o

lo
r 

F
eatu

res

In
p
u

t Im
ag

e

T
h

re
sh

o
ld

 T
r
ip

le
t L

o
ss

k-n
e
arest n

e
ig

h
b
o
rs

G
ro

u
n
d
 T

ru
th

 

C
o
lo

r F
eatu

re

A
d

aIN
 

P
aram

eters

O
u

tp
u
t Im

ag
e

G
en

e
rato

r

D
iscrim

in
ato

r

M
em

o
ry

 N
etw

o
rk

s

C
o

lo
riza

tio
n

 N
e
tw

o
rk

s

M
e
m

o
r
y
 U

p
d

a
te

In
p
u

t Im
ag

e

C
o

lo
r F

eatu
re

R
eal Im

ag
e

D
iscrim

in
a
to

r
In

p
u
t Im

ag
e

C
o
lo

r F
eatu

re

F
C



MODEL ARCHITECTURE
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Color features

• We leverage two variants to represent color information stored in 
value memory:
• Color distributions: color distributions over 313 quantized color values 

• RGB color values: set of ten dominant RGB color values of an image

Top 10 dominant RGB colors (taken from color thief)
Color dist



MODEL ARCHITECTURE
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• Query computation

• Nearest-neighbor computation

normalized

ResNet

Case2: Loss = 

Update: 

Case1: Loss = 

Update: 

MLP

Query

Spatial 

Features

Color 

Features

Input Image

Threshold Triplet Loss

k-nearest neighbors

Ground Truth 

Color Feature

AdaIN 

Parameters

Output Image

Generator

Discriminator

Memory Networks

Colorization Networks

Memory Update

Input Image

Color Feature

Real Image

DiscriminatorInput Image

Color Feature

FC
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THRESHOLD TRIPLET LOSS
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• Goal of triplet loss: making those images of a specific class closer to 
each other (positive neighbors) than it is to images of any other class 
(negative neighbors). 

• Class label information is not available in most data for colorization 
tasks. 

Example label: Girl, restaurant, blue clothes, yellow hair Blue background, two people, talking



THRESHOLD TRIPLET LOSS
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• We assume that given two images, if they have similar spatial 
features and the distance between their color distribution are 
within a certain threshold, they are likely to be in the same class. 

Positive neighbor Negative neighbor

Threshold Triplet Loss
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• Our memory M is updated after a new query q is introduced to the network. 

(i) If the distance between V[n1] and v is within the color threshold, we update the key by 
averaging K[n1 ] and q and normalizing it. Age is also reset to zero. 

(ii) If the distance between V[n1] and v exceeds color threshold δ, this indicates that there 

exists no memory slot available in our current memory that matches v. Thus, (q, v) will 
be newly written into the memory. 

Memory Update
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Colorization networks

• Conditional GAN

normalized

ResNet

Case2: Loss = 

Update: 

Case1: Loss = 

Update: 

MLP

Query

Spatial 

Features

Color 

Features

Input Image

Threshold Triplet Loss

k-nearest neighbors

Ground Truth 

Color Feature

AdaIN 

Parameters

Output Image

Generator

Discriminator

Memory Networks

Colorization Networks

Memory Update

Input Image

Color Feature

Real Image

DiscriminatorInput Image

Color Feature

FC

• Smooth L1 Loss

Model architecture



79

Colorization networks

• Coloring with Adaptive Instance Normalization (AdaIN)

normalized

ResNet

Case2: Loss = 

Update: 

Case1: Loss = 

Update: 

MLP

Query

Spatial 

Features

Color 

Features

Input Image

Threshold Triplet Loss

k-nearest neighbors

Ground Truth 

Color Feature

AdaIN 

Parameters

Output Image

Generator

Discriminator

Memory Networks

Colorization Networks

Memory Update

Input Image

Color Feature

Real Image

DiscriminatorInput Image

Color Feature

FC

Colorization networks
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• Using color distribution like style information

Color distribution

Instead of

Image

Colorization networks



RESULTS
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Res-cGANGround truth Ours Res-cGANGround truth Ours Res-cGANGround truth Ours

animation

cartoons

cartoons
(one-shot)

(few-shot)

real-images
(few-shot)

(few-shot)
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OursGround truth Res-cGAN OursGround truth Res-cGAN



RESULTS
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OursGround truth Res-cGAN OursGround truth Res-cGAN

OursGround truth Res-cGAN OursGround truth Res-cGAN



EXPERIMENTS
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• We show corresponding images of the top-3 

color features retrieved from our memory 

networks. 

• Our memory networks are trained to 

retrieve color features highly relevant to the 

content of the query image. 

• We additionally show high classification 

accuracy of our memory networks.



EXPERIMENTS
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Comparison to baselines



PRACTICAL USE CASE
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EXPERIMENTS ON MEMORY NETWORKS
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Memory networks require a lot of memory?

• Storing 10,000 features for our memory network 
only requires an additional 10, 000 x 512 x 32 = 
19.53MB of memory 

• Even with external memory networks, our model has 
the least amount of trainable parameters 

• Our actual memory networks only have 262k 

parameters

Memory networks require a lot of parameters?

Robust to hyperparameters?



FAILURE CASES
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• When our memory networks are 

insufficiently trained, they can retrieve 

an irrelevant memory slot

• Proper optimization of memory 

networks is key 

Ground truth Success CaseFailure Case



FAILURE CASES
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• Users can utilize top-k slots instead of top-1 memory slot



Overview of This Talk
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• Intro to conditional generative models 

• My own research on interactive automatic colorization
• Colorization using natural language [ECCV’18]

• Few-shot colorization via memory networks [CVPR’19]

• Reference-based sketch colorization using augmented self-exemplar [CVPR’20]

• Other work on interactive generative models and future research 
directions



Reference-based Sketch Colorization

91



Challenges in Reference-based Sketch Colorization
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• Sketch images are information-scarce, so there is little cue for their 
colorization. 

• Reference-based colorization can no longer be trained in a paired 
setting. 



Model Architecture
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• We utilize a geometrically-
transformed self-images as 
pseudo reference, which allows 
model training in a paired setting. 

• Through pixel-wise correspondence 
naturally obtained, we directly 
supervise which pixel colors in the 
reference to transfer to which pixel 
in the target. 



Qualitative Results
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Qualitative Results
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Overview of This Talk
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• Intro to conditional generative models 

• My own research on interactive automatic colorization
• Colorization using natural language [ECCV’18]

• Few-shot colorization via memory networks [CVPR’19]

• Reference-based sketch colorization using augmented self-exemplar [CVPR’20]

• Other work on interactive generative models and future research 
directions



Future Research Directions
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• Support for real-time, multiple iterative, maybe local interactions

• Reflecting higher-order user intent in multiple sequential interactions

• Revealing inner-workings and interaction handle

• E.g., explicitly using (interpretation-friendly) attention module

• Better simulating user inputs in the training stage

• Incorporating data visualization and advanced user interfaces

• Leveraging hard rule-based approaches, e.g. ,following sharp edges

• Incorporating users’ implicit feedback and online learning



GauGAN: Interactive Tool of SPADE

98Park et al., Semantic Image Synthesis with Spatially-Adaptive Normalization, CVPR’19 (Oral)

http://nvidia-research-mingyuliu.com/gaugan/

http://nvidia-research-mingyuliu.com/gaugan/


GANPaint: Interactive Image Generation
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Bau et al., GAN Dissection: Visualizing and Understanding Generative Adversarial Networks,  ICLR’19

https://youtu.be/yVCgUYe4JTM

Goal

• A user edits a generated image or a 
photograph with high-level concepts 
rather than pixel colors

• A software manipulates an image to 
achieve a user-specified goal while 
keeping the result photorealistic

Interactive image generation demo page:

http://gandissect.res.ibm.com/ganpaint.html

https://youtu.be/yVCgUYe4JTM
http://gandissect.res.ibm.com/ganpaint.html


GANPaint: Interactive Image Generation
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Bau et al., GAN Dissection: Visualizing and Understanding Generative Adversarial Networks,  ICLR’19

https://youtu.be/yVCgUYe4JTM

Contributions

• Provide the first systematic analysis for understanding the internal representations of GANs

• Show several practical applications enabled by the analytic framework

• Provide open source interpretation tools: https://github.com/CSAILVision/gandissect

(a) dissection (b) intervention

https://youtu.be/yVCgUYe4JTM
https://github.com/CSAILVision/gandissect


GANPaint: Interactive Image Generation
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Interactive Data Labeling

102

Papadopoulos et al., 

Extreme Clicking for Efficient Object Annotation, 

CVPR’17

Different User Interfaces should also be considered. 



Interactive Segmentation
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Acuna et al., Efficient Annotation of Segmentation Datasets with 

PolygonRNN++,  CVPR’18

https://youtu.be/evGqMnL4P3E

Contributions

(a) Design a new CNN encoder architecture 

(b) Show how to effectively train the model with Reinforcement Learning

(c) Significantly increase the output resolution using Graph Neural Network

(a)

https://youtu.be/evGqMnL4P3E


Interactive Segmentation
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• Interactive object segmentation is a well studied problem with the aim to reduce 
the time and cost of annotation

• Human-level performance was achieved with only a few user clicks per object

(a) Automatic annotation (b) Semi-automatic annotation

(a), (b):  Acuna et al., Efficient Annotation of Segmentation Datasets with PolygonRNN++, CVPR’18



Interactive Segmentation
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Ling et al., Fast Interactive Object Annotation with Curve-GCN, 

CVPR’19

https://youtu.be/ycD2BtO-QzU

Contributions

• Alleviate the sequential nature of Polygon RNN, by 

predicting all vertices simultaneously using a Graph 

Convolutional Network (GCN)

• Run at 29.3ms in automatic, and 2.6ms in interactive mode, 

making it 10x and 100x faster than Polygon-RNN++

https://youtu.be/ycD2BtO-QzU


Interactive Neural Machine Translation
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• Word-Based

[Álvaro Peris, Miguel Domingo and Francisco Casacuberta. 2017. Interactive neural machine translation. 
In Computer Speech and Language.]

https://www.researchgate.net/publication/312275926


Interactive Neural Machine Translation
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• Segment-Based

[Álvaro Peris, Miguel Domingo and Francisco Casacuberta. 2017. Interactive neural machine translation. In Computer Speech and 
Language.]

https://www.researchgate.net/publication/312275926


Interactive Neural Machine Translation
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• Interactive-predictive System for Multimodal Sequence to Sequence Tasks

[Álvaro Peris and Francisco Casacuberta. 2019. A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks. ACL 2019.]

https://arxiv.org/pdf/1905.08181


Interactive Neural Machine Translation

10
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• Interactive-predictive System for Multimodal Sequence to Sequence Tasks



Interactive Neural Machine Translation
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• Self-Regulated interactive 

learning guides to choose a 

certain type of feedback

• Four different types of feedback

• 1. Full correction

• 2. Error marking

• 3. Self-supervision

• 4. None

[Julia Kreutzer and Stefan Riezler. 2019. Self-Regulated Interactive Sequence-to-Sequence Learning. ACL 2019.]

https://arxiv.org/pdf/1907.05190.pdf


Interactive Neural Machine Translation

11
1



Interactive Neural Machine Translation
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2

• Original human-interactive NMT 

requires many efforts, such as 

editing or deleting

• To reduce the human efforts, it 

employs the reinforcement 

learning idea of humans 

providing reward signals in form 

of judgments on the quality of 

the machine translation  

[Khanh Nguyen, Hal Daumé III, and Jordan Boyd-Graber. 2017. Reinforcement Learning for Bandit Neural 
Machine Translation with Simulated Human Feedback. EMNLP 2017.]

http://aclweb.org/anthology/D17-1153


Interactive Neural Machine Translation

11
3



Interactive Neural Machine Translation
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• Other interesting 

Interactive NMT papers 

are listed in the 

following link: 
https://github.com/THUNLP-MT/MT-

Reading-List#interactive-nmt

https://github.com/THUNLP-MT/MT-Reading-List#interactive-nmt


Future Research Directions
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• Support for real-time, multiple iterative interactions

• Reflecting higher-order user intent in multiple sequential interactions

• Revealing inner-workings and interaction handle

• E.g., explicitly using (interpretation-friendly) attention module

• Better simulating user inputs in the training stage

• Incorporating data visualization and advanced user interfaces

• Leveraging hard rule-based approaches

• Incorporating users’ implicit feedback and online learning



Useful Links
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• 2019 ICML Workshop on Human In the Loop Learning (HILL)

• https://sites.google.com/view/hill2019

• Videos: https://icml.cc/Conferences/2019/ScheduleMultitrack?event=3511

• 2020 IUI 2020 Workshop on Human-AI Co-Creation with Generative 

Models (programs are not yet updated)

• https://hai-gen2020.github.io/

• Key researchers

• David Bau: https://people.csail.mit.edu/davidbau/home/

• Sanja Fidler: https://www.cs.utoronto.ca/~fidler/

• Richard Zhang: https://richzhang.github.io/

• Jun-Yan Zhu: https://people.csail.mit.edu/junyanz/

https://sites.google.com/view/hill2019
https://icml.cc/Conferences/2019/ScheduleMultitrack?event=3511
https://hai-gen2020.github.io/
https://people.csail.mit.edu/davidbau/home/
https://www.cs.utoronto.ca/~fidler/
https://richzhang.github.io/
https://people.csail.mit.edu/junyanz/
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Novel conditional generative models and their user interfaces 

from a user-centric perspective can open up new research 

directions in further advancing artificial intelligence techniques 

and applications. 

Thank you!



Overview of This Talk
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• Intro to generative adversarial networks (GANs) and conditional 
GANs

• Motivations of User-Interactive Generative Models

• Interactive Generative Tasks

• Taxonomy of User Input



Generative Adversarial Networks
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• Generative: It is a model for generation. 

• Networks: The model is formed as neural networks. 

• Adversarial: Improves the generation quality via adversarial training 
(using an additional discriminator). 
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Progressive Growing of GANs
Variants of

GAN

Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation, ICLR’18

• Generated Images
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StyleGAN
Variants of

GAN

Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR’19
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Variants of

GAN

Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR’19

ThisPersonDoesNotExist.com
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Applications of Generative Models Introduction

• Realistic samples for artwork, super-resolution, colorization, etc.



124

Applications of Generative Models Introduction

• Super Resolution
• C. Ledig, et al., “Photo-realistic Single Image Super-Resolution using a Generative A

dversarial Network”, CoRR, abs/1609.04802. 
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Applications of Generative Models Introduction

• In-Painting
• Raymond Yeh, et al., “Semantic Image Inpainting with Perceptual and Contextual Losses”, 

arXiv 1607.07539



126

(Paired) Image-to-Image Translation Extensions

• pix2pix: Paired Image-to-Image Translation

Phillip Isola et al. Image-to-Image Translation with Conditional Adversarial Networks, CVPR’17
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CycleGAN Extensions

• CycleGAN: Unpaired Image-to-Image Translation

presents a GAN model that transfer an image from a source domain A to a target 

domain B in the absence of paired examples.

Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle Consistent Adversarial Networks, 2017
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DCGAN (Generative Model)

DGz D(G(z))

D D(x)

x

Use convolution, Leaky ReLU

Use deconvolution, ReLU

• No pooling layer (Instead strided convolution)

• Use batch normalization

• Adam optimizer(lr=0.0002, beta1=0.5, beta2=0.999)
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CycleGAN

DB

GAB GBA

L1 Loss

Real image in domain A

Real or fake?

A: Zebra domain

B: Horse domain

Fake image in domain B Reconstructed image

Real image in domain B

Discriminator for domain B

Generator (From A to B) Generator (From B to A)

GBA generates a reconstructed image of domain A.

This makes the shape to be maintained when 

GAB generates a horse image from the zebra.

Extensions
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CycleGAN

DB

GAB

Real image in domain A

Real or fake?

A: Zebra domain

B: Horse domain

Fake image in domain B

Real image in domain B

Discriminator for domain B

Generator (From A to B)

Extensions
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CycleGAN

A: Zebra domain

B: Horse domain

DB

GAB

Real image in domain A

Real or fake?

Fake image in domain B

Real image in domain B

Discriminator for domain B

Generator (From A to B)

Extensions
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CycleGAN

DB

GAB GBA

L1 Loss

Real image in domain A

Real or fake?

A: Zebra domain

B: Horse domain

Fake image in domain B Reconstructed image

Real image in domain B

Discriminator for domain B

Generator (From A to B) Generator (From B to A)

GBA generates a reconstructed image of domain A.

This makes the shape to be maintained when 

GAB generates a horse image from the zebra.

Extensions
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CycleGAN

• Results

Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle Consistent Adversarial Networks, 2017

Extensions
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CycleGAN

• Results

MNIST-to-SVHNSVHN-to-MNIST

Odd columns contain real images and even columns contain generated images.

https://github.com/yunjey/mnist-svhn-transfer

Extensions

https://github.com/yunjey/mnist-svhn-transfer
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CycleGAN Extensions

• Results

MNIST-to-SVHNSVHN-to-MNIST

Odd columns contain real images and even columns contain generated images.

https://github.com/yunjey/mnist-svhn-transfer

https://github.com/yunjey/mnist-svhn-transfer


Conditional Generation (and Translation)
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• An additionally given input works as a condition that steers the 
generation and translation processes in a user-driven manner. 

• Two GAN-based models: CGAN and ACGAN
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Conditional GAN and ACGAN

• Auxiliary Classifier GAN (ACGAN), 2016

• Improves the training of GANs using class labels
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Conditional GAN and ACGAN

• Auxiliary Classifier GAN (ACGAN), 2016

• Improves the training of GANs using class labels



MULTI-DOMAIN IMAGE-TO-IMAGE TRANSLATION
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Domain A

(blond hair) 

Domain B

(black hair)

Domain C

(brown hair)

Domain D

(gray hair)



STARGAN
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D G

Real / Fake

(2)(1)

(1), (2) (1)

(1) when training with real images

(2) when training with fake images

Real image Fake image

G
D

Real / Fake

Input image

Fake image Fake image Fake image

Reconstructed image

(b) Original-to-target domain (c) Target-to-original domain(a) Training the discriminator

Target domain

Brown hair / Female

Black hair / Male

Original domain

Brown hair / Female

Target domainAdversarial loss

Adversarial loss Original domain
Black hair / Male
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G

Input image

Fake image

Target domain

Black hair / Male

141

Spatial replication

(𝟏 × 𝟏 × 𝟓)

(𝟏𝟐𝟖 × 𝟏𝟐𝟖 × 𝟑)

Input image

Values: (1, 0, 0, 1)

Dimension: (𝟏 × 𝟏 × 𝟒)

Target domain

(𝟏𝟐𝟖 × 𝟏𝟐𝟖 × 𝟒)

Depth-wise Concatenation

(𝟏𝟐𝟖 × 𝟏𝟐𝟖 × 𝟕)

Black / Blond / Brown / Male 

Domain label

(b) Original-to-target domain

(𝟏 × 𝟏 × 𝟒)

(𝟏𝟐𝟖 × 𝟏𝟐𝟖 × 𝟑)
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G D

Real / Fake

Input image

Fake image Fake image

(b) Original-to-target domain (d) Fooling the discriminator

Target domain

Black hair / Male Black hair / Male

Target domainAdversarial loss

D

Real / Fake

(2)(1)

(1), (2) (1)

(2) when training with fake images

Real image Fake image

(a) Training the discriminator

Brown hair / Female

Adversarial loss Original domain

(1) when training with real images
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D G

Real / Fake

(2)(1)

(1), (2) (1)

(1) when training with real images

(2) when training with fake images

Real image Fake image

G

Real / Fake

Input image

Fake image Fake image Fake image

Reconstructed image

(b) Original-to-target domain (c) Target-to-original domain(a) Training the discriminator

Target domain

Brown hair / Female

Black hair / Male

Original domain

Brown hair / Female

Target domainAdversarial loss

Adversarial loss Original domain
Black hair / Male

D


