

Recommender Systems: Concepts, Techniques, and Applications

2020. 4. 9

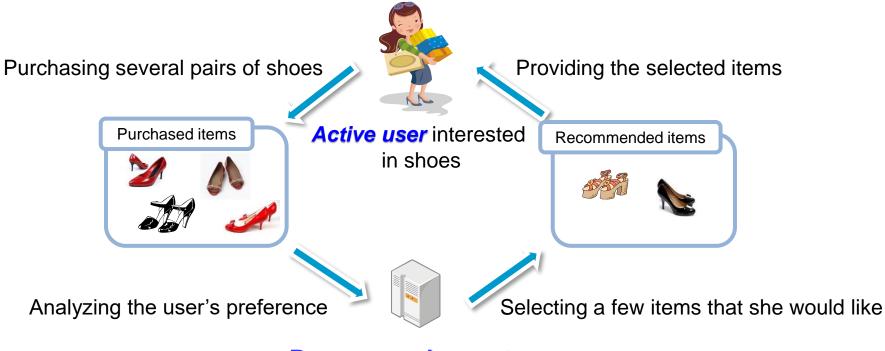
Sang-Wook Kim

Department of Computer Science and Engineering Hanyang University

Contents

- Background
 - Recommendation systems
 - Collaborative filtering (CF)
- Exploiting Uninteresting Items for Effective CF
 - Motivation
 - Proposed method
 - Evaluation
- Extensions
 - To data imputation
 - To one-class settings
- Conclusions

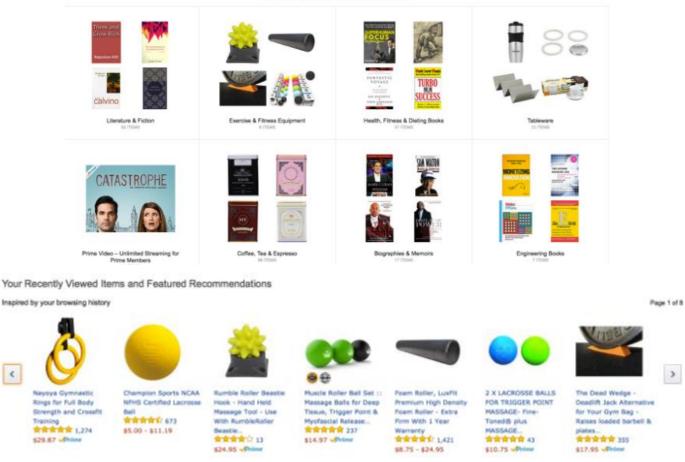
- Provide a user with a few items that she would like
 - Using her history of evaluating, purchasing, and browsing



Recommender system

Amazon

Recommended for you, Thomas



http://rejoiner.com/resources/amazon-recommendations-secret-selling-online/

Naver Shopping

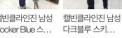
http://pc.shopping2.naver.com/ 9 April 2020

8:32		ati LTE 🔳					
	a naver.com						
백화점윈도	아울렛윈도		스타일윈도				
AiTEMS 추천 🏧	(i) 1	패션	디지털	리빙			

마음에 드는 청바지가 있으신가요?

캘빈클라인진 남성 [캘빈클라인진]17 그레이 슬림 스... 년F/W[남]스... 99.000원

[캘빈클라인진] 남 성 미드블루톤...



캘빈클라인진 남성 바디 스키니진 4... Rocker Blue 스... 39,000원 79,000원

다크블루 스키... 114,000원

○ 추천상품새로보기

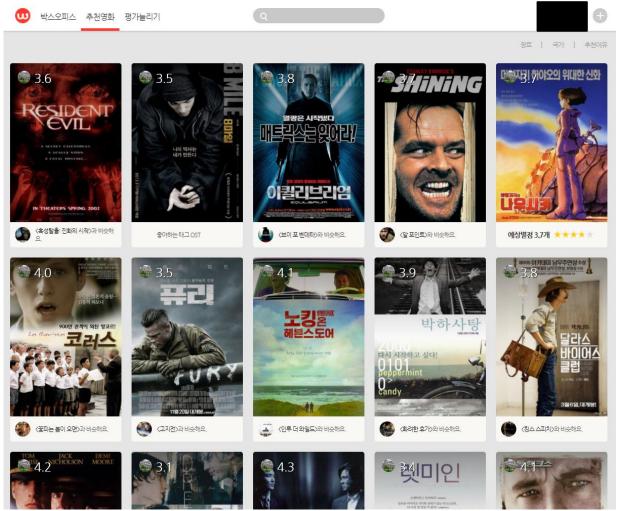
멘즈패션 훈내나는 멘즈 스타일

Netflix

https://www.netflix.com/

Page

Watcha



https://watcha.net/recommendation

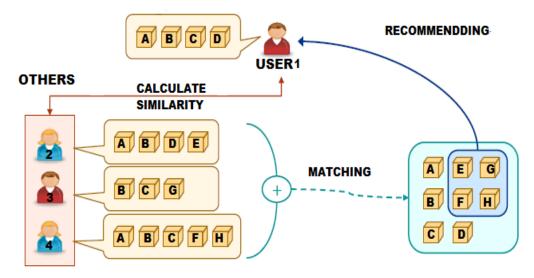
Classification of Recommendation Systems

- Content-based approach
 - Recommending those items that have similar contents to those of the active user's favorite items
- Collaborative filtering (CF) approach (our focus)
 - Recommending items rated high by neighbors who have preferences similar to that of the active user
- Trust-based approach
 - Recommending items based on trust relationships among users
- Hybrid approach
 - Recommending items by combining the approaches above

Collaborative Filtering (CF) Approach

Pad

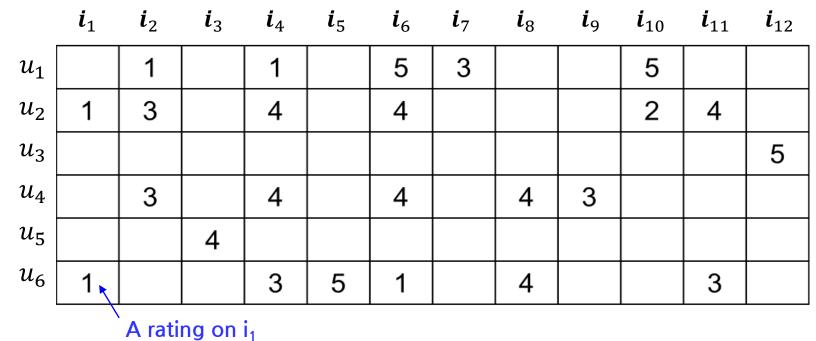
- Recommend such items rated high by neighbors who have preferences similar to that of the active user
 - Step 1: Finding a group of users (neighbors) whose preferences are similar to that of an active user c
 - Step 2: Estimating r_{c,s}, the rating of item s for active user c, based on the ratings given to item s by c's neighbors
 - Step 3: Recommending a few items with the ratings estimated high



Collaborative Filtering (CF)

• Data: rating matrix

Items

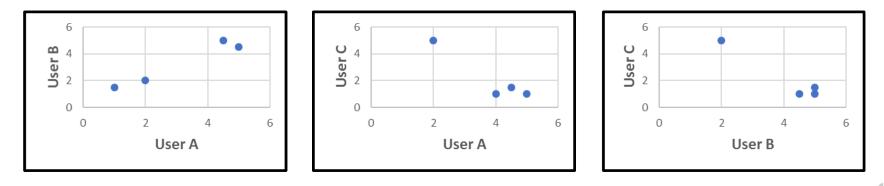


given by user u_6

Users

- Similarity measure for users *a* and *i* (used in finding neighbors)
 - Example: three users' ratings for six movies
 - User A = <4.0, 1.0, 4.5, 5.0, 2.0, _>
 - User B = < _, 1.5, 5.0, 4.5, 2.0, 5.0>
 - User C = <1.0, _, 1.5, 1.0, 5.0, 1.0>
 - Pearson correlation coefficient (PCC)

$$w(a,i) = \frac{\sum_{j} (v_{a,j} - \bar{v}_a) (v_{i,j} - \bar{v}_i)}{\sqrt{\sum_{j} (v_{a,j} - \bar{v}_a)^2 \sum_{j} (v_{i,j} - \bar{v}_i)^2}}$$



• Aggregation of ratings on a target item given by the neighbors

$$r_{c,s} = \underset{c' \in \hat{C}}{\operatorname{aggr}} r_{c',s}$$

- $r_{c,s}$: Estimated rating on item *s* for user *c*
- \hat{C} : Set of neighbors for user c
- Different methods for aggregation

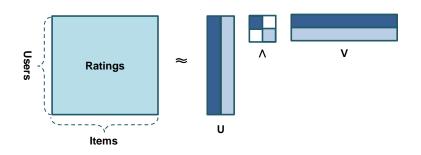
(a)
$$r_{c,s} = \frac{1}{N} \sum_{c' \in \hat{c}} r_{c',s}$$

(b) $r_{c,s} = k \sum_{c' \in \hat{c}} sim(c,c') \times r_{c',s}$
(c) $r_{c,s} = \bar{r}_c + k \sum_{c' \in \hat{c}} sim(c,c') \times (r_{c',s} - \bar{r}_{c'})$

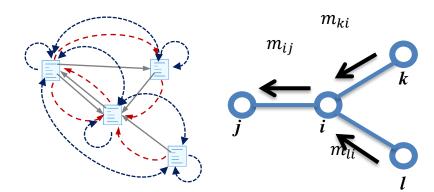
Machine-Learning Based CF Techniques

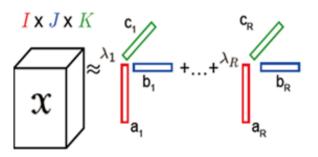
Page

Matrix/Tensor Factorization

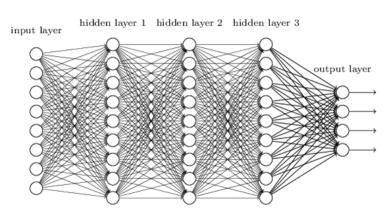


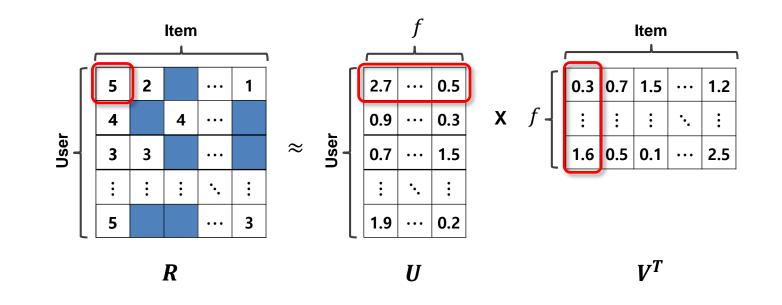
Social Network Analysis

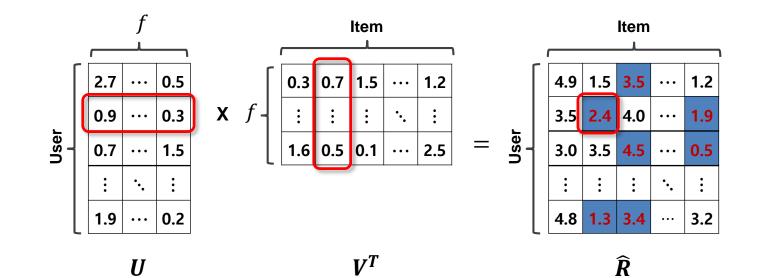




Deep Learning



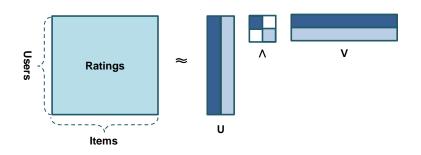




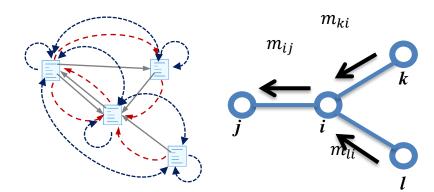
Machine-Learning Based CF Techniques

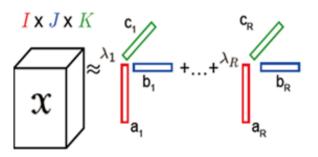
Page

Matrix/Tensor Factorization

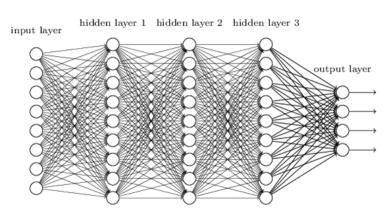


Social Network Analysis





Deep Learning

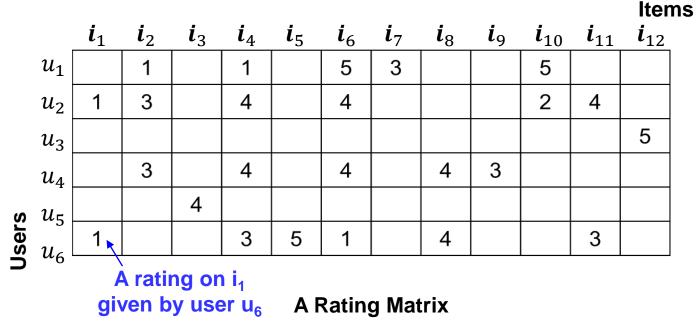


Contents

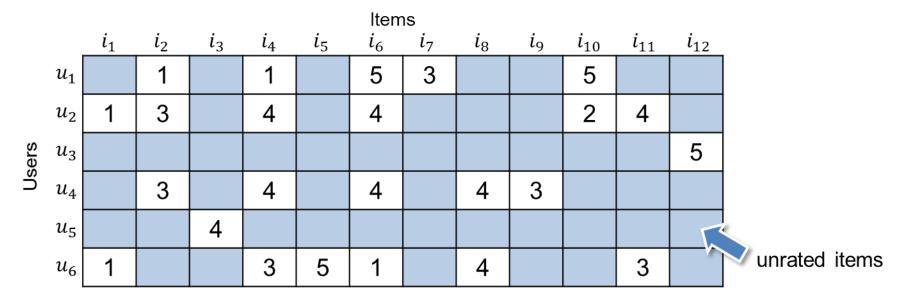
- Background
 - Recommendation systems
 - Collaborative filtering (CF)
- Exploiting Uninteresting Items for Effective CF
 - Motivation
 - Proposed method
 - Evaluation
- Extensions
 - To data imputation
 - To one-class settings
- Conclusions

"Told You I Didn't Like It": Exploiting Uninteresting Items for Effective Collaborative Filtering (IEEE ICDE'16 / IEEE TKDE'19)

- CF approaches focus on only the ratings given by users
 - Data sparsity problem: most users have evaluated only a few items
 - There are only a few ratings in a rating matrix (< 4%)
- CF approaches suffer from *low accuracy and coverage*



- Exploit uncharted unrated items
 - A fraction of rated items in a rating matrix R is extremely small (< 4%)
 - Exploiting the vast number of "unrated" items in R can lead to a significant improvement in CF approaches



Our Idea: Uninteresting Items (ICDE'16 / TKDE'19)

- Unrated items
 - Users were not aware of their existence
 - Candidates for recommendation
 - Users knew but did not like and thus did not purchase
 - Uninteresting items
- Uninteresting items (of a user)
 - Items on which the user has "negative" preferences

- Pre-use preferences
 - User's impression on items before purchasing and using them
 - Determined via meta data of items (known before purchasing)
- Post-use preferences
 - User's impression on items after purchasing and using them
 - Determined via real content of items (unknown before purchasing)

- A user has high pre-use preference for Movie #1 and Movie #2
 - The user likes Movie #1 but is disappointed at Movie #2
- A user has low pre-use preference for Movie #3

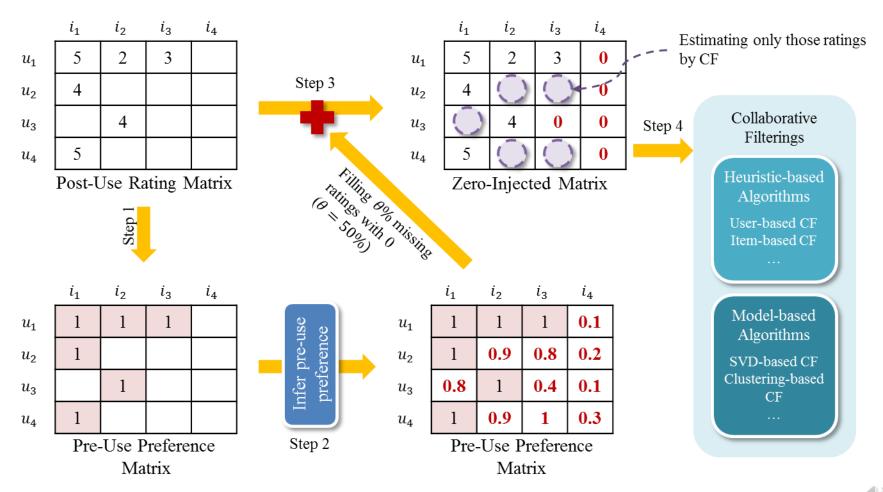
Movie	Pre-use preference	Post-use preference	Rating					
Movie#1	High	(High) +	> 5					
Movie#2	High	(Low	▶ 1					
Movie#3	Not high	Unknown	Vnrated					
-								

- In this case
 - Uninteresting items: Movie #3
 - Interesting items: Movie #1 (preferred) and Movie #2 (not preferred)

Pre-Use Preference and Uninteresting Items

- Challenge: To identify uninteresting items among unrated items
- A user's uninteresting items
 - Her pre-use preferences on them are relatively low
- How to know a user's pre-use preferences
 - For all "rated" items: highest pre-use preferences
 - Otherwise, users would not have bought them in the first place
 - For unrated items: pre-use preferences need to be inferred
 - Based on pre-use preferences on rated items

Zero-Injection (IEEE ICDE'16 / IEEE TKDE'19)



9 April 2020

Hanyang Univ.

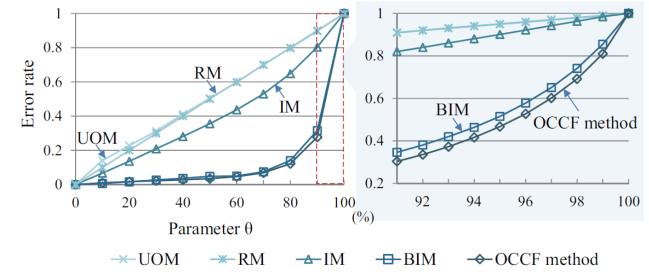
- Two strategies with uninteresting items
 - Strategy 1: to exclude uninteresting items from the final recommendation list
 - Strategy 2: to exploit both uninteresting items and ratings in CF

Page

- Error rate comparison of five inference methods
 - A user *u*'s error rate (with 5 cross validation)
 - How many *rated items* (in the test set) are selected as uninteresting items (*i.e.*, mis-classified) for *u*

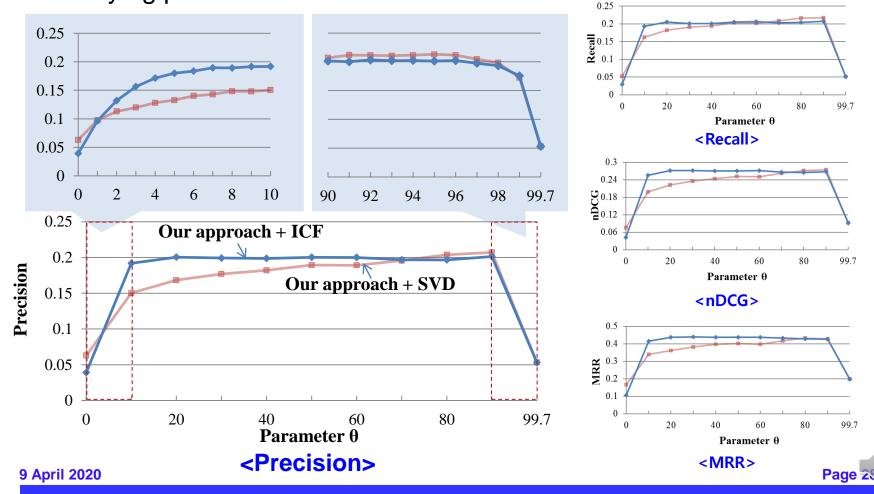
•
$$err_{u}^{\theta} = \frac{|I_{u}^{un}(\theta) \cap I_{u}^{test}|}{|I_{u}^{test}|}$$

- The OCCF method is the most effective



Effectiveness (IEEE ICDE'16 / IEEE TKDE'19)

- Hanyang Univ.
- Accuracy of ICF and SVD equipped with our zero-injection under varying parameter θ



Effectiveness (IEEE ICDE'16 / IEEE TKDE'19)

• Accuracy of four CF methods equipped with zero-injection ($\theta = 90\%$)

Metric		ICF			SVD			SVD++			PureSVD		
		Orginal	Ours	Gain	Orginal	Ours	Gain	Orginal	Ours	Gain	Orginal	Ours	Gain
_	@5	0.039	0.201	413.8%	0.063	0.207	229.7%	0.076	0.193	153.3%	0.100	0.106	16.7%
	@10	0.041	0.161	292.6%	0.056	0.166	196.9%	0.069	0.154	123.9%	0.082	0.089	19.1%
Precision	@15	0.040	0.137	243.7%	0.053	0.142	169.9%	0.063	0.134	112.0%	0.071	0.078	11.3%
	@20	0.039	0.121	211.7%	0.048	0.125	159.1%	0.058	0.118	102.3%	0.063	0.071	13.7%
all	@5	0.030	0.207	600.3%	0.052	0.218	316.0%	0.063	0.194	209.6%	0.112	0.120	16.9%
	@10	0.059	0.305	412.7%	0.089	0.325	265.9%	0.109	0.288	163.1%	0.175	0.191	19.3%
Recall	@15	0.085	0.375	341.4%	0.121	0.394	226.3%	0.150	0.361	141.2%	0.220	0.245	11.4%
	@20	0.111	0.428	285.4%	0.144	0.450	213.5%	0.184	0.415	125.3%	0.254	0.293	15.4%
	@5	0.043	0.268	527.9%	0.076	0.274	260.7%	0.087	0.256	196.0%	0.135	0.143	16.0%
2	@10	0.053	0.285	436.0%	0.084	0.297	252.0%	0.099	0.272	175.6%	0.151	0.162	17.6%
nDCG	@15	0.062	0.303	390.7%	0.094	0.315	234.8%	0.110	0.291	163.7%	0.164	0.178	18.9%
	@20	0.071	0.319	351.7%	0.101	0.332	227.3%	0.121	0.306	153.5%	0.174	0.193	10.9%
M	RR	0.106	0.426	303.0%	0.165	0.428	159.2%	0.181	0.416	129.3%	0.262	0.274	14.7%

Contents

Page

- Background
 - Recommendation systems
 - Collaborative filtering (CF)
- Exploiting Uninteresting Items for Effective CF
 - Motivation
 - Proposed method
 - Evaluation
- Extensions
 - To data imputation
 - To one-class settings
- Conclusions

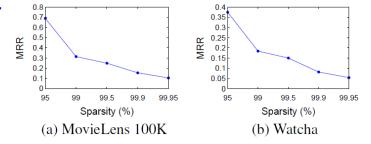
Page 🗟

gOCCF: Graph-Theoretic One-Class Collaborative Filtering Based on Uninteresting Items (AAAI'18)

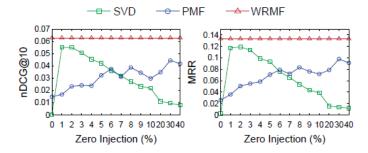
- **One-Class** Collaborative Filtering (OCCF)
 - To handle implicit feedback (*i.e.*, one-class setting, rather than ratings setting)
 - Example: Click, bookmark, and purchase
 - Challenges
 - Less information to capture a user's taste than in ratings setting
 - Sparser datasets than in ratings setting

Motivation

- Existing OCCF approaches
 - Less effective in dealing with sparser datasets with many unrated items

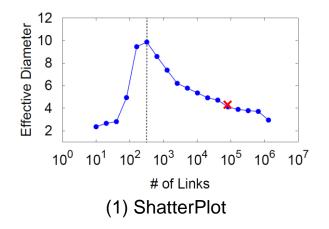


- A naïve application of zero-injection in one-class setting
 - Lower accuracy than existing OCCF approaches
 - Sensitivity to the number of uninteresting items

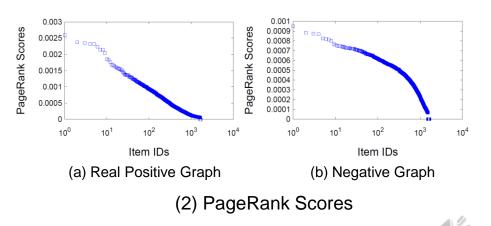


Our Idea: Exploiting Graph Properties (AAAI'18)

- Challenge: To determine a right number of uninteresting items with the best accuracy
- Analyze properties of negative graphs constructed by useruninteresting item pairs
 - Topological properties
 - Use graph shattering theory

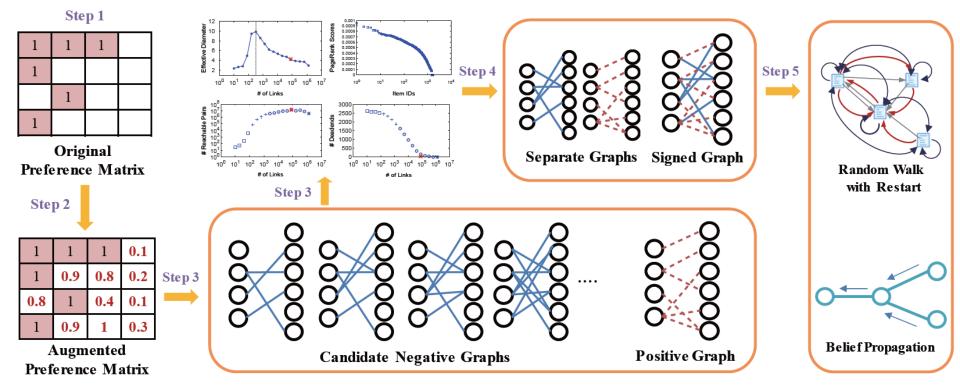


- Information propagation
 - Use PageRank scores



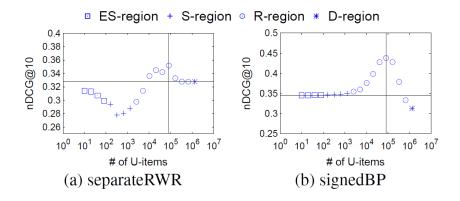
Page

Overview of Our Approach: gOCCF (AAAI'18) Hanyang Univ.



Effectiveness of gOCCF (AAAI'18)

 Accuracy according to the number of uninteresting items



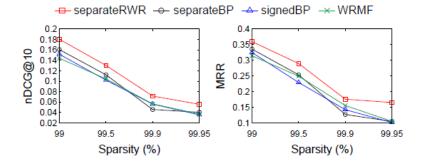
 Best accuracy when having the same number of negative links as that of positive links Accuracy before and after exploiting uninteresting items

	MariaLana				
Metrics	MovieLens				
	separateRWR	separateBP	signedBP		
P@10	0.302 (9.2%)	0.309 (7.2%)	0.370 (28.2 %)		
R@10	0.171 (8.2%)	0.164 (10.9%)	0.210 (42.1%)		
nDCG@10	0.352 (7.3%)	0.365 (5.7%)	0.438 (27.0%)		
MRR	0.584 (2.5%)	0.604 (1.9%)	0.679 (14.6%)		
HLU	43.894 (2.8%)	47.195 (1.4%)	55.980 (20.3 %)		
	Watcha				
	separateRWR	separateBP	signedBP		
P@10	0.113 (10.8%)	0.124 (13.2%)	0.151 (38.3 %)		
R@10	0.107 (9.6%)	0.113 (13.4%)	0.142 (41.9%)		
nDCG@10	0.136 (9.9%)	0.152 (13.2%)	0.190 (41.8%)		
MRR	0.295 (7.1%)	0.329 (10.8%)	0.391 (32.0 %)		
HLU	14.288 (7.7%)	17.448 (20.4 %)	23.012 (58.8%)		
	CiteULike				
	separateRWR	separateBP	signedBP		
P@10	0.122 (21.0%)	0.112 (26.9%)	0.091 (2.9%)		
R@10	0.199 (13.5 %)	0.162 (26.4%)	0.131 (2.4%)		
nDCG@10	0.202 (18.2 %)	0.175 (29.9%)	0.138 (2.3%)		
MRR	0.326 (14.0%)	0.295 (21.0%)	0.247 (1.3%)		
HLU	21.257 (23.0%)	19.323 (33.3%)	14.680 (1.2%)		

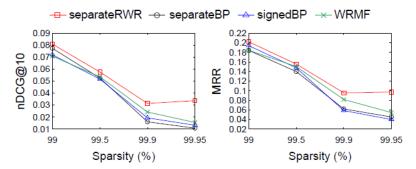
- Accuracy of competing methods and our approach
 - CiteULike dataset

	MostPopular	SVD_ZI	PMF_ZI	WRMF	BPRMF	GBPRMF	SLIM	separateRWR	separateBP	signedBP
P@10	0.012	0.043	0.034	0.045	0.092	0.049	-	0.122	0.112	0.091
R@ 10	0.029	0.044	0.037	0.049	0.140	0.078	-	0.199	0.162	0.131
nDCG@10	0.023	0.055	0.044	0.062	0.136	0.066	-	0.202	0.175	0.138
MRR	0.050	0.117	0.073	0.133	0.240	0.132	-	0.326	0.295	0.247
HLU	1.527	5.899	4.489	7.198	12.754	4.005	-	21.257	19.323	14.680

- Accuracy of WRMF and our approach per sparsity
 - MovieLens 100K dataset



- Watcha dataset



- We propose a new concept of uninteresting items to make more accurate CF for both ratings and one-class settings
- Our approach
 - To identify uninteresting items
 - To apply them to existing CF methods
 - To exclude them from the final recommendation list
- Strengths of our approach
 - Orthogonal to CF methods
 - Parameter-free for both ratings and one-class settings
 - Consistently and universally improves existing CF and OCCF methods

How to Impute Missing Ratings? Claims, Solution, and Its Application to Collaborative Filtering (WWW'18)

CFGAN: A Generic Collaborative Filtering Framework based on GAN (ACM CIKM'18)

RAGAN: Rating Augmentation with GAN towards Accurate Collaborative Filtering (WWW'19)

No, That's Not My Feedback: TV Show Recommendation Using Watchable Interval (IEEE ICDE'19)

RealGraph: A Graph Engine Leveraging the Power-Law Distribution of Real-World Graphs (WWW'19)

Conclusions

- Background
 - Recommendation systems
 - Collaborative filtering (CF)
- Exploiting Uninteresting Items for Effective CF
 - Motivation
 - Proposed method
 - Evaluation
- Extensions
 - To data imputation
 - To one-class settings
- Conclusions

Thank You !

