5/13 ML-guided JavaScript Engine Fuzzing and Bug Classification (손수엘 교수/카이스트 전산학부)

작성자
kaistsoftware
작성일
2021-05-06 13:16
조회
12074
  • 강사 : 손수엘 교수 (카이스트 전산학부)
  • 일시 : 2021. 5. 13 (목) 17:00~18:30
JavaScript (JS) engine vulnerabilities pose significant security threats affecting billions of web browsers. While fuzzing is a prevalent technique for finding such vulnerabilities, there have been few studies that leverage the recent advances in neural network language models (NNLMs). In this work, we present Montage, the first NNLM guided fuzzer for finding JS engine vulnerabilities. The key aspect of our technique is to transform a JS abstract syntax tree (AST) into a sequence of AST subtrees that can directly train prevailing NNLMs. We demonstrate that Montage is capable of generating valid JS tests, and show that it outperforms previous studies in terms of finding vulnerabilities. Montage found 37 real-world bugs, including three CVEs, in the latest JS engines, demonstrating its efficacy in finding JS engine bugs.
We also investigated the feasibility of applying various machine learning classifiers to determine whether an observed JS engine crash triggers a security bug. We designed and implemented CRScope, which classifies security and non-security bugs from given crash-dump files. Our experimental results on 766 crash instances demonstrate that CRScope achieved 0.85, 0.89, and 0.93 Area Under Curve (AUC) for Chakra, V8, and SpiderMonkey crashes, respectively. CRScope also achieved 0.84, 0.89, and 0.95 precision for Chakra, V8, and SpiderMonkey crashes, respectively. This outperforms the previous study and existing tools including Exploitable and AddressSanitizer. CRScope is capable of learning domain-specific expertise from the past verdicts on reported bugs and automatically classifying JS engine security bugs, which helps improve the scalable classification of security bugs.
전체 143
번호 제목 작성자 작성일 추천 조회
공지사항
2025년 봄학기 콜로퀴엄 일정 안내
kaistsoftware | 2025.02.27 | 추천 0 | 조회 11047
kaistsoftware 2025.02.27 0 11047
82
5/26 R&BD를 위한 3T(TRM/TT/TRIZ) 연계방법론 (이상국 교수/가톨릭대학교 미디어기술콘텐츠학과)
kaistsoftware | 2022.05.23 | 추천 0 | 조회 12975
kaistsoftware 2022.05.23 0 12975
81
5/19 정밀의료를 위해서 인공지능이 정말로 뭘 할까? (신현정 교수/아주대학교 산업공학과)
kaistsoftware | 2022.05.17 | 추천 0 | 조회 10579
kaistsoftware 2022.05.17 0 10579
80
5/12 수학, 확률, 통계 그리고 AI와 ML (김병천 교수/KAIST 경영공학부)
kaistsoftware | 2022.05.13 | 추천 0 | 조회 11156
kaistsoftware 2022.05.13 0 11156
79
4/14 Deep Learning for Understanding the World like Humans (안성진 교수/KAIST 전산학부)
kaistsoftware | 2022.04.11 | 추천 0 | 조회 11010
kaistsoftware 2022.04.11 0 11010
78
4/7 자연언어처리와 지식그래표: 한국어와 글로벌 활동 (최기선 교수/KAIST 전산학부)
kaistsoftware | 2022.04.04 | 추천 0 | 조회 10400
kaistsoftware 2022.04.04 0 10400
77
3/31 와인의 세계 (오영환 교수/KAIST 전산학부)
kaistsoftware | 2022.03.28 | 추천 0 | 조회 11168
kaistsoftware 2022.03.28 0 11168
76
3/24 Recommendation Systems in Biomedicine (송길태 교수/부산대학교 정보컴퓨터공학부)
kaistsoftware | 2022.03.28 | 추천 0 | 조회 11258
kaistsoftware 2022.03.28 0 11258
75
3/17 AI로 신제품 설계하기 (강남우 교수/KAIST 조천식녹색교통대학원)
kaistsoftware | 2022.03.15 | 추천 0 | 조회 11688
kaistsoftware 2022.03.15 0 11688
74
3/10 교육분야의 데이터 활용과 과제 (한정윤 박사/한국교육개발원 미래교육연구본부)
kaistsoftware | 2022.03.14 | 추천 0 | 조회 12514
kaistsoftware 2022.03.14 0 12514
73
2022년 봄학기 콜로퀴엄 일정 안내
kaistsoftware | 2022.03.14 | 추천 0 | 조회 13730
kaistsoftware 2022.03.14 0 13730